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Abstract

This study presents a machine learning (ML) approach to identify vulnerability of
bridges to fire hazard. For developing this ML approach, data on a series of bridge
fires was first collected and then analyzed through three algorithms; Random forest
(RF), Support vector machine (SVM) and Generalize additive model (GAM),
competing to yield the highest accuracy. As part of this analysis, 80 steel bridges and
38 concrete bridges were assessed. The outcome of this analysis shows that the ML
based proposed approach can be effectively applied to arrive at the risk based
classification of bridges from a fire hazard point of view. In addition, the developed
ML algorithms are also capable of identifying the most critical features that govern
bridges vulnerability to fire hazard. In parallel, this study showcases the potential of
integrating ML into structural engineering applications as a supporting tool for
analysis (i.e. in lieu of experimental tests, advanced simulations, and analytical
approaches). This work emphasizes the need to compile data on bridge fires from
around the world into a centralized and open source database to accelerate the
integration of ML in to fire hazard evaluation.
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1 Introduction
Bridges are strategic structures that facilitate transportation and supply chain opera-

tions. As such, bridges are to be designed to withstand normal and extreme load con-

ditions. However, in current practice, bridge design is carried out to mitigate most

loading conditions (including wind, and earthquakes), with the exception of fire hazard

(AASHTO LRFD, 2017). From this perspective, there only exists a few general guide-

lines aimed to limit the vulnerability of bridges to fire hazard in the National Fire Pro-

tection Association (NFPA) Report 502 (NFPA, 2017). It should be stressed that even

NFPA guidelines are general and qualitative in nature and are only applicable to brid-

ges with spans greater than 300m. As one can see, such bridges constitute only a small

percentage of the total number of bridges in a given region.

Unlike building fires, which comprises of burning of cellulose materials, bridge fires

are often trigged by burning of hydrocarbon fuels and hence are shown to rapidly

reach temperatures exceeding 1000 °C within a short period of time (Kodur & Naser,

2020; Peris-Sayol et al., 2017). Similarly, while structural systems in buildings are often
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insulated and protected by active fire means (i.e. sprinklers), load bearing structural sys-

tems in bridges continue to be designed with our without any active or passive fire pro-

tection features. Given the above, and noting that the bridges are often away from

nearest fire department locations (to fight the fires), continuous exposure to the

surrounding environment and their extended service life, implies that bridges become

vulnerable to extreme events, especially fire hazard. Recent incidents have shown that

fires on bridges can lead to the development of significant thermally-induced forces on

connections, and result in collapse (NTSB, 2017; Eisel et al., 2007). Fortunately, bridge

fires often extinguish quickly due to burning out of limited fuel present or firefighting

activities. However, such incidents although may not cause collapse, they can still in-

duce large damage to load bearing members, which can result in closure of the bridges

for weeks for repair and retrofitting (Garlock et al., 2012).

The above discussion infers that it is of highest importance to properly identify brid-

ges from a fire hazard perspective to enable authorities from taking appropriate actions

at the design stage itself to improve the resilience of such bridges. However, given the

large number of bridges (e.g. + 660,000 and + 878,000 operational bridges in the US

and China, respectively) infers that identifying vulnerable bridges to fire can be challen-

ging (Statista, 2020; LTBP, 2020). It is due to such challenges that little research has

been directed towards identifying fire-vulnerable bridges (Giuliani et al., 2012; Quiel

et al., 2015; Aziz & Kodur, 2013; Kodur et al., 2017; Kodur & Naser, 2019; Alos-Moya

et al., 2017; Ma et al., 2019). Of the existing limited works, the majority applied similar

methods to that adopted in identifying vulnerable bridges to wind and seismic hazard

(i.e. importance factors) (Naser & Kodur, 2015a). Other works applied statistical and

fragility analysis methods to arrive at a methodology to enable assessment of bridges to

fire (Gidaris et al., 2017).

Other than the above noted traditional methods, machine learning (ML) con-

tinues to present itself as novel and effective approach to tackle data-oriented

problems in the civil engineering domain (Naser, 2018; Naser, 2019a; Gandomi

et al., 2011; Solhmirzaei et al., 2020; Taffese & Sistonen, 2017; Hodges et al.,

2019). For example, ML methods have been proven effective when applied to a

variety of problems within the domain of bridge design and maintenance including;

bridge assessment (Mangalathu et al., 2019), seismic analysis of bridges (Manga-

lathu & Jeon, 2019), maintenance of bridges (Okazaki et al., 2020), and traffic path

planning (Zuo et al., 2019) etc. However, such ML approaches is yet to be applied

into classifying bridges to fire hazard.

This paper aims to bridge the above knowledge gap by applying ML to identify and

classify bridges according to their vulnerability to fire hazard. Three algorithms namely;

Random forest (RF), Support vector machine (SVM) and Generalize additive model

(GAM), are developed and applied to examine how various features extracted from a

large set of bridges, traffic flow and fire incidents can influence vulnerability to fire.

These algorithms are trained to analyzed 80 steel bridges and 38 concrete bridges in

pursuit of learning hidden patterns responsible for bridges vulnerability to fire hazard.

Overall, all algorithms performed well with an accuracy of about 70%, a classification

equivalence time of about 100 bridges per minute. Due to the unique learning nature

of ML algorithms, the developed algorithms herein can be further finetuned with the

addition of new bridge-related features and fire incidents. A key take home message is
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that ML can be a valuable tool to automatically analyze large bridge populations to

identify those of high vulnerability to fire.

2 Development of bridge fire database
To effectively develop a ML-based approach, a good set of fire incidents that occurred

on bridges is needed. Thus, a comprehensive literature review was first carried out to

document notable bridge fire incidents. This review documented key and common fac-

tors that governing the response of bridges to fire as documented by the departments

of transportation (DoTs) reports and from consultation with practicing engineers (Eisel

et al., 2007; Quiel et al., 2015; NYDOT, 2008; Bocchini et al., 2014; Qiang et al., 2009;

Davis & Tremel, 2008; Guthrie et al., 2009; Culliton, 2018). These documented factors

include; bridges (structural) features, traffic flow patterns, and fire characteristics. Over-

all, this survey led to collecting data on fire incidents in 118 bridges (see Fig. 1). While

this study considered three main features, other features can also be included once in-

formation on such features are reliably obtained or collected. It is our intention to

present a general approach to enable adoption of ML into this domain and we invite

interested readers to extend and update the presented database and approach as shown

in earlier works (Naser & Kodur, 2015b).

2.1 Bridge features

The identified physical features that are govern the vulnerability of bridges against

fire hazard include: structural system and construction materials used in load bear-

ing elements, span and age of the bridge. Figure 1 shows that the compiled data-

base features from 80 steel bridges and 38 concrete bridges that experienced fire

incidents over the last three decades. The same figure also shows that out of these

bridges 17 were box-based, 15 were cable-based, 65 were girder-type bridges, and

22 truss-like bridges. In terms of bridge span, the average span of all compiled

bridges collected is 117 m. The full distribution of spans in all bridges are shown

in Fig. 1. Finally, the average age of collected bridges is 45 years which coincides

with that reported by US DOTs (LTBP, 2020).

2.2 Traffic features

Within traffic features, both geographical significance as well as number of lanes on the

bridge were included as they represent the significance of the bridge to the region, ex-

pected traffic flow and availability of alternative routes – as these factors indirectly

imply the adverse consequences of the loss of functionality of the bridge due to fire.

The geographical significance of bridges is grouped under three classes: rural, sub-

urban and urban as noted in a previous work by the authors (Kodur & Naser, 2013).

Figure 1 shows that there are 32 rural bridges and 43 sub-urban and urban bridges. In

lieu of geographical significance, the distribution of bridges’ number of lanes wherein

in 50% contain 1–3 lanes and the other half contained 4–11 lanes.

2.3 Fire features

Herein, two features are identified to be of importance: possible fuel type to be involved

in burning and position of fire breakout on the bridge. In the first feature, fuel type
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varied between gasoline/diesel, or hydrocarbon fuels, and other types of flammables

(i.e. chemicals, wildfires etc.) – see Fig. 1. For simplicity, three positions for fire break

scenarios out were considered; in the vicinity of the bridge, above the bridge and under

the bridge with incidents of 4, 56 and 58 bridge fires belonging to the aforenoted

positions.

2.4 Damage magnitude

Contingent upon the severity of fire, the magnitude of damage the bridge experiences

and any possible traffic stress to the surrounding transportation network can vary. On

one hand, if a bridge does not experience significant structural damage from fire, then

this bridge can be re-opened for traffic in short order. On the other hand, moderate to

major damage to structural members of a bridge require proper inspection and repair,

which in turn necessitates closure of bridge from safety consideration.. To enable such

inspection and timely repairs, through traffic need to be reduced on the route and have

to be detoured. Thus, there are two classes of damage that are to be considered herein;

no damage to bridge structure (does not necessitate full shut down), and damage

Fig. 1 Details on the compiled bridge database
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(necessitates shut down). Overall, 69 of the surveyed bridges experienced nil to minor

damage, 66 underwent major damage (including collapse).

3 Description of machine learning approach
This section describes the general description and steps associated with the develop-

ment of the ML approach and associated ML algorithms.

3.1 General approach

For the application of ML approach to a problem, a user must select a series of ML al-

gorithms. The selection process can be purely be arbitrary or can be taken as a result

of a sensitivity analysis (Barber, 2012). Oftentimes, the use of 1 ML algorithm to under-

stand a phenomenon can be sufficient. However, recent experience has shown that this

practice might lead to biased ML-based solutions in some situations and also in few

other instances it may not produce a near-optimal solution in a timely manner. With

this consideration, this study explores the use of multiple algorithms to harnesses the

advantages of multi-algorithm search. In this multiple algorithms approach, ML algo-

rithms can search in a competitive arrangement to look for best possible solutions

(which from the view of this study refers to accurately classifying bridge for the risk of

fire hazard). Once a solution is identified by each algorithm, a series of fitness metrics

are applied to identify the fittest solution for a problem (Naser & Alavi, 2020). Follow-

ing this procedure, the identified solution is not only vetted across different search

mechanisms but is also vetted through different ML analysis stages (see Fig. 2). Once a

ML algorithm is properly validated, then this algorithm can be ready for deployment to

assess new bridges for fire hazard. With the addition of new bridge fires and informa-

tion, the algorithm can be re-tuned to improve its prediction capability.

Once the vulnerable bridges are identified for fire risk, then these bridges can be in-

corporated with needed measures to enhance fire safety and minimize their vulnerabil-

ity to fire risk. Such measure include provision of fire insulation to steel members or

put in measures to minimize the occurrence of fire in the vicinity of the bridge (e.g. no

storage of flammable materials under bridges). Other solutions can also be adopted as

noted in recent works (Naser, 2019b).

3.2 Random forest (RF)

Random forest (RF) is an algorithm that capitalizes on principles of ensemble learning

(in which a tree-like algorithm is applied multiple times with different types of algo-

rithms that are joined together to form a more powerful prediction model that applies

majority voting principle) – see Fig. 3. RF can be used in classification and is defined as

a nonparametric classifier (i.e. does not require assumptions to be made on the form of

relationship between the predictors and the response variable). In a classification prob-

lem, the majority voting method is used to arrive at the final output of RF analysis. A

typical formulation of RF is presented herein:

Y ¼ 1
J

XJ
j¼1

C j;full þ
XK
k¼1

1
J

XJ
j¼1

contribution j x; kð Þ
 !

ð1Þ
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where, J is the number of trees in the forest, k represents a feature in the observation,

K is the total number of features, cfull is the average of the entire dataset (initial node).

3.3 Support vector machine (SVM)

Support vector machine (SVM) is an algorithm often applied in classification problem.

SVM arrives at solutions through obtaining a separating hyperplane among classes (see

Fig. 4). The SVM algorithm can be illustrated by considering a training data set T =

{(xi, yi), i = 1, 2,…,N}. This data set consists of an N number of m-dimensional features

vectors xi and their corresponding labels yi ∈ {−1, 1}. SVM aims to find the separating

Fig. 2 A flowchart illustrating the various steps for the application of the ML approach

Fig. 3 Representation of a typical RF algorithm topology (Sirakom, 2020)
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boundary between two or more classes. This is done through maximizing the margin

between the decision hyperplane and the data set, while minimizing the misclassifica-

tion. The decision/separating hyperplane is defined as

wtxþ b ¼ 0 ð2Þ

where w represents the weight vector defining the direction of the separating boundary,

whereas b denotes the bias. The decision function is defined as

f xð Þ ¼ sgn wtxi þ bð Þ ð3Þ

where sgnðαÞ ¼ 1; α≥0
− 1; α < 0

�
SVM algorithm aims to maximize the margin through

minimizing ||w||, which results in the following constrained optimization problem

min
w;ξ

τ1 w; ξð Þ ¼ min
w;ξ

1
2

wj jj j2 þ C
XN
i¼1

ξ i

" #
ð4Þ

subject to yi(w
txi + b) ≥ 1 − ξi, ξi > 0, C > 0, i = 1, 2, …, N.

where τ1(.), ‖.‖
2, and ξi denote the objective function, L2-norm, and slack variable, re-

spectively. When the data is linearly inseparable, SVM offers an alternative solution for

classification. To this end, SVM employs a kernel trick projecting the data into a higher

dimensional feature space to make data divisible, as illustrated in Fig. 4 (Han et al.,

2012). The kernel function, in fact, defines the nonlinear mapping from the input space

into a high dimensional feature space.

Fig. 4 Demonstration of SVM space
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3.4 Generalize additive model (GAM)

Generalize additive model (GAM) is a nonparametric extension of Generalize linear

model. GAM can be useful in scenarios were a user may not have a priori reason or

preference for choosing a particular algorithm or response function (such as linear,

quadratic, etc.). GAM separates features into knots, and then attempts to fit polynomial

functions between such knots. In GAM, the model fit follows a deviance/likelihood,

and hence fitted models are directly comparable using likelihood techniques. In GLM,

the outcome class (Y) of a phenomenon is assumed to be a linear combination of the

coefficients (β) and features (x1, …, xn) as seen in Eq. 5.

Y ¼ β0 þ β1x1;i þ…þ βnxn;i ð5Þ

3.5 Machine learning model development and validation

The above discussed algorithms in Section 3 are applied to analyze the compiled data-

base shown in Section 2. For a start, the compiled database was randomly arranged to

minimize biasness that might arise from a particular feature or fire incident. After that,

the database was split into a training set (80%) and testing and validation set (20%) to

be used to evaluate the performance (i.e. fitness) of the machine learning techniques

once the training process is complete (Hasni et al., 2018). In addition, a k-fold cross

validation was also applied. In this technique, the database is further divided into k sub-

sets. Each of subset is then kept aside (in holdout), while the shuffling of data is re-

peated k times, such that each time, one of the k subsets is used as the test set/

validation set and the other k-1 subsets are put together to form a training set. This

method significantly reduces bias and variance as well as limits overfitting of the algo-

rithms. A fold of k = 5 is used herein.

In all cases, the results of the ML analysis is examined via the following performance

metrics:

� Area under the ROC curve (AUC)

� This metric Measures the two-dimensional area underneath the entire Receiver

Operating Characteristic (ROC) curve with best performance reaching 100%,

such that:

AUC ¼ 1
2
w hþ h

0� �
ð6Þ

where, w = width, and h and h’ = heights of the sides of a trapezoid histogram.

� Precision ¼ TP
TP þ FP

and�� Recall ¼ TP
TP þ FN

where TP denotes true positive incedentsð Þ; FP
denotes false positive incidentsð Þ; and FN denotes false negative incidentsð Þ

ð7Þ

Table 1 shows the confusion matrix and fitness metrics for all algorithms. It is worth

noting that the overall accuracy for these techniques is quite promising. All of the

aforementioned metrics reveal the accuracy of the RF algorithm as opposed to SVM or
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GAM. Overall, the listed metrics shows that the proposed ML approach can be used to

classify fire damage in bridges with confidence.

In addition, a sensitivity analysis was carried out on the proposed ML approach to

identify the relative impact of each feature within on the overall vulnerability of bridges.

In Table 2, feature impact refers to the likelihood that increasing a specific feature leads

to an increase to the outcome (i.e. if a feature has an impact of 80%, then 80% of the

time an increase in this specific feature would lead to an increase the bridge undergoing

damage). Table 2 shows that the main two features with the highest sensitivity (i.e. im-

pact) are the fuel type involved in the fire incident and the span of the (primarily

girders bridge, with age of the bridge and geographical significance coming in next.

The ML analysis was finally used to examine the association between the influencing

features and explore the degree of dependence between the selected features. Table 3

lists such association. It is clear that the association between features is minimal (less

than 0.3) which implies that the independence of these features upon each other. This

independence further our confidence in this analysis as the selected features were also

indirectly related to each other.

The above ML approach can now be deployed by authorities to identify vulnerable

bridges to fire hazard. This outcome of this example shows that predictions from RF,

SVM and GAM algorithms may not always agree with actual incident given the above

accuracy metrics which falls short of 100%. Still, the proposed ML approach continues

to be feasible as it can seemingly be extended beyond the above three algorithms.

4 Practical applications
The ML revolution is being implemented in parallel areas right now (Hamet & Trem-

blay, 2017; Litman, 2014) and it is of merit to the bridge community to start planting

seeds to allow the use of ML in bridge applications. In addition, recent engineering

graduates are becoming very familiar with ML; partly to their engagement with modern

technologies. The same students will be leading our area in the coming 10 years or so

and hence current works can start seeding for wide implementation of ML in the near

future. For example, the proposed approach herein can be used to evaluate the fire re-

sistance of bridge components (i.e. girders and piers). To extend the applicability of the

proposed approach to bridge fire resistance design, a larger dataset is to be compiled

which will require tremendous effort as data on bridge fires are not easily accessible.

Table 1 Performance of selected algorithms (%)

AUC Training AUC Testing No damage Damage Precision (%)

RF 73% 70% No damage 8/39/12 3/16/2 11/55/14

Damage 0/11/4 8/29/5 8/40/9

Recall (%) 8/50/16 11/45/7

SVM 72% 68% No damage 7/37/4 4/18/10 11/55/14

Damage 1/11/0 7/29/9 8/40/9

Recall (%) 8/48/4 11/47/19

GAM 71% 64% No damage 6/23/12 5/32/2 11/55/14

Damage 0/6/4 8/34/5 8/40/9

Recall (%) 6/29/16 13/66/7
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We hope future works will be able to compile such a database to allow developing im-

proved ML algorithms.

The use of ML will allow engineers from drawing conclusions on the vulnerability of a

given bridge towards certain extreme events by comparing its key features to that of the

general population of the bridges that failed under various conditions. The use of ML will

help engineers to identify such bridges and associated events that may lead to failure with

ease. More specifically, properly developed ML tools can be trained to identify what are

the combination of factors that are associated with bridge failures (whether fire or other

hazards). Based on the identified pattens, bridges with similar patterns will be flagged

under a certain criterion, and DOT engineers can examine such bridges in more details.

This will not only reduce the amount of inspection work to be carried by DOT engineers

Table 2 Significant features, as per sensitivity analysis, influencing the fire risk on a bridge
Exp. Feature Feature impact (%)

RF Fuel 100

Span 80.5

Age 70

Geo. Significance 28.9

No. of lanes 22.8

Structural system 21

Fire position 19.4

Material type 15.5

SVM Fuel 100

Span 65.5

Geo. Significance 54.3

Structural system 47

Fire position 36.6

No. of lanes 22.7

Material type 18.2

Age 16.2

GAM Age 100

Fuel 78

Span 76

Fire position 4.8

Structural system 3.2

No. of lanes –

Material type –

Geo. Significance −1.3

Table 3 Degree of dependence between the influencing features that govern fire risk on a bridge
Damage Span Material Fuel Geo. Significance Fire position No. of lanes

Damage 1.000

Span 0.095 1.000

Material 0.011 0.158 1.000

Fuel 0.031 0.145 0.023 1.000

Geo. Significance 0.032 0.184 0.043 0.016 1.000

Fire position 0.005 0.161 0.025 0.006 0.019 1.000

No. of lanes 0.013 0.273 0.051 0.059 0.101 0.055 1.000
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to thoroughly analyze every single bridge, but will also provide a new set of eyes to the

same engineers to examine bridges from a new perspective.

5 Conclusions
Based on the findings of this work, the following conclusions can be drawn.

� Bridge fire incidents continue to rise around the world due to urbanization and

increasing transportation of fuels and hazardous chemicals. However, there is

currently lack of methodologies for identifying bridges for the risk of fire hazard

and also guidelines for designing bridges for fire safety.

� ML can be successfully applied to develop bridge assessment tools that can identify

vulnerability of a bridge to fire hazard. These ML based techniques can be specifically

tailored to account for varying features, such as those related to physical, traffic, and

fire characteristics, in evaluating the risk of fire hazard on a specific bridge.

� The proposed ML approaches can be improved further with the compilation of

reliable data and observations of fire incidents on bridges and also the method can

be extended to assess vulnerability of tunnels to fire hazard.

Abbreviations
GAM: Generalize additive model; ML: Machine learning; NFPA: National Fire Protection Association; RF: Random forest;
SVM: Support vector machine
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