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Abstract Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated 

temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced 

explosive spalling. Spalling is a multi-dimensional, complex and most of all sophisticated phenomenon with the 

potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, 

we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete 

to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel 

artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference 

system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression 

(MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a 

comprehensive data-driven examination of actual fire tests, this study demonstrates that AI techniques provide 

attractive tools capable of predicting fire-induced spalling phenomenon with high precision.  
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1.0 Introduction 

Fire is a destructive force in nature. Unlike other loading conditions, i.e. wind, earthquake, blast 

etc., fire can damage structures on two fronts. In the first, high temperatures can trigger micro-structure 

transformation within construction materials, leading to material softening and weakening (Khoury, 2000). 

In the second front, fire effects may also alter geometrical features of structures (or structural members for 

the matter). In this scenario, the adverse effects of fire, either directly (i.e. through flames and combustion) 

or indirectly (e.g. fire-induced phenomenon etc.), can damage structural integrity and/or load bearing 

capabilities via reduction in member’s effective cross section (as in charring of wood members, buckling 

of steel members or spalling in concrete members) (MZ Naser, 2011). The latter is the focal point of this 

work.  

Concrete is an inert material and a poor heat conductor which makes it attractive for fire engineering 

applications (Erdem, 2017; Ibrahimbegovic, Boulkertous, Davenne, Muhasilovic, & Pokrklic, 2010; MZ 

Naser & Chehab, 2018). As a result, concrete structures rarely require external fire proofing. In fact, 

building codes and standards lists standardized fire resistance ratings for various concrete-based structural 

members (BSI & European Committee for Standardization, 2004). These ratings often associate a given 

fire resistance time (i.e. duration of 2 hours to fire exposure) with member’s cross-sectional dimensions 

(e.g. width or depth and/or concrete cover to interior steel reinforcement). Hence, fire designers may simply 

pick a suitable memberal configuration to satisfy fire codal provisions. While this practice has been well-

documented and proven effective, this has also been shown to underestimate available fire resistance in 
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concrete structural members and been criticized as a result of numerous fire incidents and their post-fire 

investigations (Meacham, Engelhardt, & Kodur, 2009; Peris-Sayol, Paya-Zaforteza, Balasch-Parisi, & 

Alós-Moya, 2017).  

It is worth noting that such criticism primarily stems from the fact that standardized fire ratings 

were developed as a result of comprehensive testing programs carried out few decades ago. Such tests were 

conducted on concrete materials available in the 1960-70s which, quite frankly, share little resemblance to 

modern concretes given the tremendous advancement in material sciences nowadays. Traditional concretes 

are made of a mixture of sand, cement, aggregates, and water. Thus, these concretes have simple micro-

structure, relatively high porosity and are hence often referred to as traditional concretes (i.e. normal 

strength concrete (NSC)). On the other hand, modern concretes comprise of above components, together 

with advanced admixtures, fillers, and additives, all of which complicate mixture homogeneity as well as 

alter key chemical and physical characteristics of concrete (Phan & Carino, 2000). Some of the modern 

types of concrete include high strength concrete (HSC), high performance concrete (HPC), fiber reinforced 

concrete (FRC) etc. A key point to remember is that modern concretes are essentially designed to 

outperform and replace traditional concretes and hence are specifically tailored to have high strength (dense 

micro-structure) and durability features (i.e. low permeability to mitigate corrosion of steel reinforcement) 

(V. K. R. Kodur, 2018).  

While such properties are ideal for ambient working conditions (viz. high-rise buildings/marine 

and transportation infrastructures), the same properties are unfavored once concrete is exposed to elevated 

temperatures. This is due to the fact that the dense nature of modern concretes, when combined with its low 

permeability, tend to trap water moisture within concrete for prolong periods of time. Under fire conditions, 

generated heat evaporates this moisture which then turns into water vapor. Vapor accumulates within 

capillary voids/pores and once vapor pressure exceeds a threshold (i.e. tensile strength of concrete), 

concrete spalls (Klingsch, 2014). This phenomenon occurs under fire conditions, and as such measures to 

mitigate fire-induced spalling are seldom put into place due to the fact the building codes continue to 

recognize fire as a primary loading effect. As such, fire rarely governs the design of a structure as opposed 

to other loading effects such as wind or earthquake loading etc. (CEN, 2002).  

A number of researchers examined fire-induced spalling phenomenon through classical means i.e. 

experimentations (Boström, McNamee, Albrektsson, & Johansson, 2018; Kalifa, Chéné, & Gallé, 2001; 

Zhang, Cullen, & Kilpatrick, 2016), numerical simulations (Dwaikat & Kodur, 2009), analytical works 

(Bažant & Thonguthai, 1979) etc. A close look into these works shows that they tend to involve a tedious 

procedure and been only verified against few tests. Hence, the applicability of traditional methods to 

evaluate concrete’s tendency to spall under fire conditions might not be viable nor easily applied. In order 

to overcome some of the challenges and limitations associated with previously developed methodologies, 

this study explores the potential of utilizing artificial intelligence (AI) into comprehending the process of 

fire-induced spalling in concrete structures. In recent years, AI has become an attractive and promising 

technique to solve complex and seemingly random engineering phenomena (Boussabaine, 1996; M. 

Cobaner, Unal, & Kisi, 2009; Kisi & Çobaner, 2009; Lee, Yuen, Lo, Lam, & Yeoh, 2004; M. Naser, Abu-

Lebdeh, & Hawileh, 2012; M. Z. Naser, 2018; Seitllari, 2014; Seitllari & Kutay, 2018). A major advantage 

of AI is its capability to learn from observations and patterns and ability to produce predictive models; 

potentially waving the necessity for expensive and cumbersome experimental works. In the context of 

concrete materials and structures, AI has been employed in a multitude of perspectives as documented in 

recent studies (Ashteyat & Ismeik, 2018; Asteris & Kolovos, 2017; Bilgehan & Kurtoğlu, 2016; Eredm, 

Kantar, Gucuyen, & Anil, 2013; Hodhod, Said, & Ataya, 2018; Lingam & Karthikeyan, 2014; Mansouri, 

Gholampour, Kisi, & Ozbakkaloglu, 2018; Mansouri & Kisi, 2015; M. Naser et al., 2012; M. Z. Naser & 

Seitllari, 2019; Saha, M.L.V., & Kumar, 2017; Yavuz, 2019).  
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 In this work, the application of traditional analysis (viz. multilinear regression (MLR)), and AI 

computing techniques namely: artificial neural network (ANN), adaptive neuro-fuzzy interface system 

(ANFIS), and genetic algorithm (GA), are implemented to develop predictive models for fire-induced 

spalling in concrete structural members. The proposed models take into account geometric (cross sectional 

dimensions and thickness of concrete cover), material (concrete type and compressive strength) as well as 

loading features (i.e. concentric or eccentric loading) when evaluating fire-induced spalling of reinforced 

concrete (RC) columns. Furthermore, these models implicitly account for high temperature material 

properties of constituent materials, and as such do not require input of such properties nor special solution 

framework. The validity of these models was examined against actual fire-tested RC columns collected 

from various fire tests.  

 

2.0 Fire-Induced Explosive Spalling in Concrete Columns – An Overview 
Before introducing the developed AI methodology, a concise review on fire behavior of RC 

columns is beneficial to understand the complexity of fire-induced explosive spalling in such members. 

When fire breaks out, cross-sectional temperature in surrounding structural members (say a RC column) 

starts to slowly rise. This slow rise in temperature is due to the inherently low thermal conductivity and 

high specific heat of concrete as well as presence of moisture (in concrete micro-structure). As a result, a 

significant amount of heat is required to raise temperature in concrete. Thus, in the initial stage of fire, a 

thermal gradient develops in which the temperature at the exposed surface of concrete is much higher than 

that at the inner layers of concrete1 (see Figure 1a). At this stage, the fire-exposed RC column typically 

expands, under higher load it will only contract as shown in Figure 1b. Later on, and due to the rise in cross-

sectional temperature and associated degradation in strength properties, the column starts to weaken. This 

corresponds to a contraction stage in which the axial deformation of the column decreases and shifts from 

an expansion-controlled (noted in the positive side of Figure 1b into a contraction-controlled (noted in the 

negative side of the same figure).  

 

 

 

 

 

 

 

 

 

 

                                                 
1While steel reinforcement has much higher thermal conductivity and lower specific heat than concrete, the 

temperature in steel can still be assumed to be similar to that of the surrounding concrete (as the area of reinforcement 

is very small as compared to that of concrete cross-section). 
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Figure 1 Typical response of RC columns under fire conditions. 

 

With the continuous rise in sectional temperature, the strength and Young’s modulus properties of 

both concrete and steel reinforcement starts to degrade. This degradation is slow as it reflects the reliance 

on concrete material under elevated temperatures. Still, the degradation in strength and Young’s modulus 

properties could be accelerated by fire-induced effects such as spalling of concrete. Spalling can be broadly 

grouped under two classes; explosive spalling and corner spalling (Khoury, 2000). Explosive spalling tends 

to occur violently and during the early stages of fire exposure and this type of spalling is primarily governed 

by the development of pore pressure facilitated by moisture migration as well as the development of thermal 

gradients; once temperature in concrete layers reaches 220-280°C (Liu, Tan, & Yao, 2018). On the other 

hand, corner spalling mainly occurs gradually and along the edges of members due to unrestrained thermal 

expansion in the transverse direction. In either case, once spalling occurs, a reduction in cross-sectional 

mass of concrete column is expected and with the increase of fire exposure duration and further losses in 

mechanical properties of concrete and reinforcing steel, the column eventually fails. In general, a RC 

column undergoing spalling is prone to fail before a similar column that does not undergo spalling (given 

that both are subjected to similar loading and fire conditions).  

 

3.0 Data Collection 
In order to feed the developed AI-based models, a literature review was first carried out to collect 

studies and data points from fire tests associated with fire-induced spalling. In this process, notable works 

were identified and then reviewed (Hass, 1986; Venkatesh Kodur & McGrath, 2003; VKR Kodur, Cheng, 

Wang, Latour, & Leroux, 2001; VKR Kodur, McGrath, Leroux, Latour, & MacLaurin, 2000; Lie & 

Woollerton, 1988; Myllymaki & Lie, 1991; Rodrigues, Laím, & Correia, 2010). From these studies, critical 

factors were extracted including geometrical, material, loading and spalling features of fire-tested RC 

columns. For example, the National Research Council of Canada (NRCC) carried out a number of research 

programs to examine the behavior of RC columns made of normal strength, high strength, and high-

performance concretes under fire. In one study, Lie and Woollerton (Lie & Woollerton, 1988) tested 41 RC 

columns under standard fire conditions while varying shape (square, rectangular, and circular), cross-

sectional size (203×203 mm2 – 406×406 mm2), ratio of longitudinal steel rebars (2.19 – 3.97%), type of 

aggregate (carbonate, siliceous and lightweight), compressive strength of concrete (34-42 MPa), load 

magnitude (0 – 90%).  

In a separate testing program, Kodur et al. (Venkatesh Kodur & McGrath, 2003; VKR Kodur et al., 

2001, 2000) carried out fire tests on high strength and high-performance RC columns and noted the 

tendency of these columns to fire-induced spalling. In their tests, Kodur al. (Venkatesh Kodur & McGrath, 

2003; VKR Kodur et al., 2001, 2000) varied a number of features such as spacing of ties, as well as loading 

configuration (i.e. eccentricity). More recently, Shah and Sharma (Shah & Sharma, 2017) conducted fire 

resistance experiments on 8 RC columns, 6 that were made of normal strength concrete and 2 comprising 

of high strength concrete. These 8 columns were longitudinally reinforced with eight steel rebars each of 

16 mm diameter and were embedded behind 40 mm concrete cover. Other fire tests were also carried out 
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by Myllymi and Lie (Myllymaki & Lie, 1991), Rodrigues et al. (Rodrigues et al., 2010). It should be noted 

that a complete list of the 89 selected columns is provided in Table A in the Appendix. 

 

4.0 Methodology and Rationale  
This section summarizes both mathematical and computational aspects of the traditional analysis 

procedure and AI computing techniques. Four techniques, namely: multilinear regression (MLR), adaptive 

neuro-fuzzy interface system (ANFIS), artificial neural network (ANN) and genetic algorithm (GA) were 

used to develop predictive models for fire-induced spalling in concrete. Detailed descriptions of these 

modeling approaches are provided herein. 

 

4.1 Multi-Linear Regression (MLR) 
The multi-linear regression method attempts to establish a relation between two (or more 

independent variables) and one dependent variable by means of fitting a linear equation into experimental 

(measured) data points. For example, consider y to be the response (dependent variable), and a1, a2…, az to 

be predictor variables, thus the MLR equation can be defined using Equation (1) : 

𝑦 =  𝜉0 + 𝜉1𝑎1 +  𝜉2𝑎2+ . . . . + 𝜉𝑧𝑎𝑧 (1) 

where 𝜉0 is the intercept regression coefficient, 𝜉1, 𝜉2,…, 𝜉𝑧 are the regression parameters projected using 

the least-square error between the estimated and experimental response (Chapra & Raymond, 2010). 

Before the MLR model is developed, the input arguments are selected based on the principal 

analysis concept (Bro & Smilde, 2014). The main idea of this concept is to investigate the influence of each 

input variable on the response (dependent variable) and then only select the most influential input variables 

for further consideration. Thus, the available experimental data points were randomly separated into two 

groups including a training set and a testing set. The training set (≈ 80% of the data points) comprised of 

the model regression coefficient determination of MLR. The predictive strength of the MLR generated 

model was then validated using the testing set (≈ 20% of the data points). According to the resultant 

sensitivity analysis, a potential correlation was distinguished among the following input combinations: 

compressive strength of concrete (fc), the width of RC column (Brc), the magnitude of loading eccentricity 

(e), and magnitude of applied loading (P). As such these parameters were chosen to be input variables.  

 

4.2 Artificial Neural Networks (ANNs) 
The conceptual design of an artificial neural network (ANN) mimics the biological neural network 

of the brain. This technique is known for its ability to break down and solve very complex and/or nonlinear 

problems using simple mathematical operations (Kisi & Çobaner, 2009). In ANN, artificial neurons act as 

processing hubs and use mathematical functions to determine the behavior of received inputs/data points. 

This study applied a commonly used type of ANNs known as multi-layer feed-forward neural network. 

This ANN is structured by interconnected neurons, grouped in layers with each layer fully connected to the 

successive layer (see Figure 2). It is worth noting that recent studies have reported that ANN can be a 

promising technique for understanding the nature of complex phenomena and hence is its potential is 

examined herein (Boussabaine, 1996; Lee et al., 2004; Naji et al., 2016; Naser et al., 2012; Seitllari, 2014; 

Seitllari and Kutay, 2018). 
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Figure 2. ANN structure used in this study. 

 

Once input into the first layer, input data flows only from the input layer towards hidden and output 

layers. Every neuron processes the received input vector and relays the information to the following layer 

through specific connections. The process of forward flowing of data is known as the feed-forward network. 

The model development consists of two main processing phases: training and testing. For a given set of 

data, the training phase of multi-layer feed-forward neural network befits in arranging various weights to 

acceptable limits. This process continues for a pre-defined number of iterations and/or as long as a pre-

specified error tolerance is achieved between experimental and ANN-predicted output. After the training 

process is finalized, it is expected that the retrieved results to be very similar to the data provided for the 

training phase. Usually, the network training process is performed using back-propagation algorithm by 

minimizing the error between the input and output layers and adjust the weights in reverse direction after 

each iteration cycle (Kisi & Çobaner, 2009). The most commonly used optimization method is Leveberg-

Marquard which, evaluates the error in terms of Mean Squared Error (MSE). In this method, if z is the 

experimental dataset, then MSE can be calculated using Equation (2).  

𝑀𝑆𝐸 =
1

𝑧
∑(𝑒𝑖)2

𝑧

𝑖=0

=
1

𝑧
∑(𝑚𝑖 − 𝑝𝑖)2

𝑧

𝑖=0

 (2) 

where, z = the total number of datasets, 𝑒𝑖 = the error for each input set, 𝑚𝑖 = the measured output, and 𝑝𝑖 = 

the estimated output. 

There are three steps used for determining an optimal ANN topology and these steps include: (i) 

determining the preliminary structure, (ii) training the network and (iii) testing the network. The ANN can 

be characterized by a number of layers wherein each layer serves as a set of parallel nodes. In this study, a 

three-layer ANN structure, with only one intermediate layer, is used (see Figure 2). By using neurons in the 

hidden layer, the network can learn and recognize the relevant data patterns and approximate complex 

nonlinear mapping (transformation) between the input and output datasets.  

The activated transfer function processes the data and then the hidden layer passes the results (i.e. 

final values) to the output layer. The abbreviations are shown in Figure 2, WH and WO, represent the 

interconnection weights for the hidden layer and output layer, respectively. Likewise, bH and bO are the 

biases for hidden layer and output layers, respectively. The ANN developed herein employed a trial and 

error procedure to determine the best network design/topology. Logistic (a.k.a tansig: aH = 2/(1+exp(-2*p))-

1)) and linear (aO=purelin (aH)) transfer functions were observed to perform more accurately for hidden 

layer and output layer, respectively (M. Cobaner et al., 2009). The best-fitting model was statistically 

evaluated in terms of MSE as well as coefficient of determination (R2) and mean absolute relative error 

5 x 4
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(MARE) (see equations below). The predictive capability of the ANN model was evaluated on the same 

training and testing data sets used for MLR model development. 

R2 =
Σ(𝑚𝑖 − 𝑝𝑖)2

Σ(𝑝𝑖 − 𝑝𝑎𝑣𝑔)2
 (3) 

MARE =
1

𝑧
 ∑ |

𝑚𝑖 − 𝑝𝑖

𝑚𝑖
| ×  100

𝑧

𝑖=1

 (4) 

where, pavg = the average estimate output. 

 

4.3 Adaptive Neuro-Fuzzy Interface System (ANFIS) 
Adaptive Neuro-Fuzzy Interface System (ANFIS) is a multilayer adaptive network-based fuzzy 

inference system that was introduced by Jang (Jang, Sun, & Mizutani, 1997). This technique is known for 

its capability to implement hybrid learning procedure thus, enabling neural network to mimic the linguistic 

approach of expert knowledge systems (i.e. if-then rules) without precise quantitative analysis. The 

structure of this fuzzy inference system consists of a number of nodes which are connected through 

directional links. Each node is identified by a function with a fixed or adjustable parameter. The learning 

stage of fuzzy systems uses error minimization techniques to match the parameter values with the pre-

determined training data set. The most common learning algorithm is the back-propagation learning 

algorithm which allows the fuzzy system to adjust the relations between layers by minimizing the sum of 

squared differences using the training data set (Daldaban, Ustkoyuncu, & Guney, 2006).  

Besides numerical variables, the fuzzy method also applies verbal/logical labels. The “if-then” rules 

(or fuzzy conditional statements) are employed to capture the imprecise cognizance between the fuzzy 

variables. The initial concept and basic principles of fuzzy systems were first introduced by Zadeh (Zadeh, 

1995) as to be applied in scenarios where vague linguistic statements are often used to drive uncertainties 

in different control mechanism. According to Zadeh (Zadeh, 1995), while experts thinking cannot be 

correlated to certain (quantitative) values, this can still be conveyed through levels of fuzzy sets. This 

procedure utilizes an “if-then” rule system. For example, this process involves mapping of a certain set to 

a fuzzy set interval. This so called mapping is enabled through the membership functions which are used 

to numerically define the partial belonging of a statement by assigning values between 0 and 1. Thus, in the 

case of uncertainty, the variable is known to be fuzzy and is approximated on a compact set through a 

membership function. Typically, the membership function is imparted in linear form for computational 

simplicity (Zadeh, 1995). It is noteworthy that the fuzzy inference system alone has significant adaptation 

difficulties with changing external environment. However, the association of neural networks with the fuzzy 

inference system was intended to overcome this issue by introducing the new concept called adaptive neuro-

fuzzy inference approach.  

This study applied the first order Tagaki-Sugeno model due to its compactness and computational 

efficiency (Murat Cobaner, 2011). This fuzzy reasoning system comprises of two inputs x and y. The first-

order Tagaki-Sugeno fuzzy model is set with two “if-then” rules, as can be shown by the following 

formulations:  

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1 = 𝑎1 𝑥 +  𝑏1 𝑦 + 𝑟1  (5) 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2 = 𝑎2 𝑥 +  𝑏2 𝑦 + 𝑟2                                                          (6) 

where 𝑥, 𝑦 = input arguments, 𝐴, 𝐵 = the linguistic labels, 𝑎, 𝑏, 𝑟 = output function parameters. The 

schematic demonstration of this approach is visually illustrated in Figure 3. The resulting output is the so-

called crisp value which is the weighted average of each output rule.  
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Figure 3. The first order Tagaki-Sugeno fuzzy model with two rules and two inputs. 

 

An illustrative example of a typical fuzzy inference system prototype for two inputs (x and y) is 

illustrated in Figure 4. As illustrated in Figure 4, a fuzzy inference system contains five layers mainly; 

fuzzification layer (Layer 1), rule inference layer (Layer 2), normalization layer (Layer 3), defuzzification 

layer (Layer 4) and the final output layer (Layer 5) briefly explained as follows: 

 

 
 

Figure 4. Equivalent ANFIS architecture. 

 

Layer 1: every node i in this layer is an adaptive node characterized by bell function, e.g: 

µ𝑖(𝑥) =
1

1 + |
𝑥− 𝛿1

𝛼1
|2𝛽1

 (7) 

where µ𝑖(𝑥) = ith resultant of 1st layer, x = node input, 𝛼1, 𝛽1, 𝛿1 = parameter set. Parameters of the first 

layer are usually denoted as the premise set. The resultants of the first layer are the membership values of 

the premise part.   

 Layer 2: this layer comprises nodes that multiply incoming signals and send the product of this 

multiplication to the next layer. The output of each node indicates the firing strength of a given rule. 
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𝑊𝑖 = µ𝑘𝑖(𝑥)µ𝑙𝑖(𝑦), i =  1, 2, … (8) 

where 𝑊𝑖 =2nd layer ith output, µ𝑘𝑖(𝑥), µ𝑙𝑖(𝑦) = signals coming from the 1st layer.  

 Layer 3: this layer encompasses nodes which compute the ratio of the ith rule’s firing strength to 

the summed value of all rules’ firing strengths. The resultant of this layer is known as the normalized firing 

strength: 

𝑊̅i =
𝑊i

𝑊1 + 𝑊2 + 𝑊3 + 𝑊4
, i =  1, 2, … (9) 

Layer 4: this layer’s nodes are adaptive with node functions. 

𝑊̅𝑖𝑓𝑖 = 𝑊̅𝑖(𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑟𝑖), i =  1, 2, … (10) 

where 𝑊̅𝑖 = 3rd layer ith output, 𝑎𝑖 , 𝑏𝑖,𝑐𝑖 = parameter set.  

Layer 5: this layer’s single node computes the final output as described in Equation (11) the 

summation of all incoming signals.   

𝑓 = ∑ 𝑊𝑖𝑓𝑖

𝑛

𝑖=1

 (11) 

Further description of ANFIS can be found in Jang (Jang et al., 1997).  

Various ANFIS structures for the selected input parameters (i.e. 𝐵𝑟𝑐, 𝑓𝑐 , 𝑒, 𝑃) were input into the 

program code including fuzzy toolbox developed in MATLAB. The generated ANFIS structures; especially 

the topology that gave the highest R2 and minimum MSE and MARE were selected. Two Gaussian 

membership functions to the NF models were found enough for modeling fire-induced spalling. The 

necessary details of the selected model are also provided in the next section. 

 

4.4 Genetic Algorithm (GA) 
 Genetic algorithm is an evolutionary technique that was introduced by Koza (Koza, 1992) and 

utilizes supervised programs to solve a given phenomenon through principles of Darwinian selection. In 

this soft computing technique, predefined algorithms search a program space instead of a data space to 

arrive at mathematical representations. In GA, a random population of individuals often referred to as 

“trees” is created to house a number of possible solutions through the structural ordering of mathematical 

symbols. Thus, a possible solution in GA is a ranked tree consisting of functions and terminals. For 

example, a function (F) may contains basic mathematical operations (addition “+”, multiplication “×” etc.), 

power functions (logarithm “log”, exponential “exp”), conditional functions (Greater than “>”, less than 

“<” etc.), Logic functions (“AND”, “OR”, “NOR”, “NAND” etc.), among others. On the other hand, the 

terminal (T) comprises of arguments as well as numerical constants and/or variables, etc. Both functions 

and terminals are first randomly generated and then joined together to make a model. Hence, a developed 

model has a tree-like formation (configuration) in which branches can extend from a function and end in a 

terminal as shown in Figure 5. 
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Figure 5. Typical tree representation for √𝒙 +
𝟗

𝒚
 in GA 

 Once a set of models is arrived at, the GA evaluates the fitness (accuracy) of each model for 

reproduction. The fitness of a model is defined as a value that best reflects how good the model’s predicted 

results are from that observed in experiments. The fittest models are then selected and manipulated by a 

number of operations i.e. reproduction, crossover and mutation (Koza, 1992). While the reproduction 

operation gives a higher probability of selection to more successful models, the crossover operation ensures 

the exchange of genetic material between the evolved models. In the mutation operation, the GA randomly 

selects a function (or terminal) from a model to mutate. For example, if a mutation is carried out on a tree, 

then a new function node is chosen and the original node together with its relative sub-tree is replaced by a 

new randomly created sub-tree. Finally, the fitness for all of the processed models is calculated and is 

terminated once a convergence condition is met.  

 

5.0 Results and Discussion 
In the current study, concrete strength (fc), width of RC column (Brc), magnitude of eccentricity 

(e) and loading (P) were used as input parameters to multi-linear regression (MLR), artificial neural 

network (ANN), adaptive neuro-fuzzy system (ANFIS) and genetic algorithm (GA) to evaluate occurrence 

of fire-induced explosive spalling in RC columns. In order to assess the capability of the applied techniques, 

the testing and training data sets were fixed hence; each technique was fed with the same input data set 

values. The data set selection process for both the training set and testing set was statistically evaluated as 

presented in Table 1. It can be seen that the magnitude of eccentricity (e) shows the highest skewed 

distribution (2.0 for the training set and 1.64 for the testing set), followed by the load (P). This table also 

shows that the presented values confirm strong statistical correlations of the selected data points. The 

developed models’ statistical evaluation was determined using mean-squared error (MSE), mean absolute 

relative error (MARE), and coefficient of determination (R2). It is noteworthy that R2 indicates the degree 

at which the predicted and measured values are linearly related. The higher R2 is, the better the prediction 

for the developed model. Whereas, MSE and MARE values are more useful for providing information on 

Square root (√) 

Addition (+) 

x Division (/) 

9 y 
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the predictive performance of the developed model. In contrary to R2, the smaller MSE and MARE, 

represent high precision and accuracy for a given model. 

 

Table 1. Data statistics for training and testing. 

 

Table 2 shows the statistical criteria of different models developed based on the above-mentioned 

computing methods. The high value of R2 indicates that there is a good correlation between the measured 

values and predicted values estimated by the computing methods in the training phase. This table shows 

that the GA performs with the highest precision with R2 = 0.95 in the training phase and R2 = 0.80 in the 

testing phase, thus outperforming the other methods and closely followed by ANN, ANFIS, and MLR. 

Similarly, the same ranking is observed for the other two statistical parameters, however, with ANN having 

the lowest MSE and MARE and as expected MLR having the highest MSE. Interestingly, GA’s MARE 

value was observed to be the highest. According to the obtained results, it can be said that the ANN and 

GA methods demonstrate better simulation efficiency as compared to developed ANFIS and MLR models. 

From the obtained statistics, it can be inferred that the MLR and ANFIS approaches did not yield accurate 

prediction. It was also clear that the proposed GA model could generalize better than the preceding two 

methods followed by ANN model which, demonstrated satisfying performance in estimating the complex 

phenomena of spalling occurrence in RC columns.  

 

Table 2. MSE, MARE and R2 statistics the developed models. 

 

 Figure 6 illustrates the predicted spalling phenomenon by the four computing methods against the 

experimental results for the training dataset and testing dataset, respectively. The results were evaluated 

 Training Phase 

Input x  sx csx xmin xmax 

Concrete strength, fc 59.4 31.0 1.09 24 138 

RC column width, Brc (mm)  316.4 47.3 0.71 203 406 

Magnitude of eccentricity, e (mm) 36.8 38.4 2 0 40 

Applied loading, P (kN) 1647.9 1187.1 1.41 0 4981 

 Testing Phase 

Input x  sx csx xmin xmax 

Concrete strength, fc 66.2 38.3 0.73 28 138 

RC column width, Brc (mm)  337.6 49.8 0.77 300 406 

Magnitude of eccentricity, e (mm) 5.9 11.4 1.64 0 40 

Applied loading, P (kN) 2152.4 1605.7 0.83 0 5373 

Note:  x =overall mean, sx= standard deviation, csx =skewness coefficient, xmin =minimum and xmax= 

maximum. 

Method 
Training Phase 

 
Testing Phase 

MSE MARE R2 MSE MARE R2 

MLR 29.57 0.17 0.30  22.17 0.13 0.49 

ANN 16.77 0.10 0.61  12.27 0.06 0.78 

ANFIS 25.71 0.15 0.39  21.06 0.12 0.53 

GA 0.01 0.23 0.95  0.06 0.89 0.80 
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considering the model response as follows; 1-spalling occurred, and 2-no spalling occurred2. It can be 

inferred from these figures that the prediction of spalling phenomena using GA and ANN methods are 

closer to the actual observations as compared to the other developed methods in both training phase and 

testing phase. Moreover, MLR and ANFIS have the largest difference between the observed and predicted 

occurrences.  

No Spalling
Spalling occurred

False prediction

True prediction

MLR model

 

No Spalling 
Spalling Occurred

False prediction

True prediction

ANN model

 

No Spalling
Spalling occurred

False prediction

True prediction

ANFIS model

 

No Spalling
Spalling 

False prediction

True prediction

GA model

 
a) Training 

No Spalling
Spalling occurred

False prediction

True prediction

MLR model

 

No Spalling
Spalling occurred

False prediction

True prediction

ANN model

 

                                                 
2 Except in the case of GA, where this model was developed to yield 0 for No spalling, and 1 for Spalling 
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No Spalling
Spalling occurred

False prediction

True prediction

ANFIS model

 

No Spalling
Spalling Ocurred

False prediction

True prediction

GA model

 

b) Testing 

Figure 6. Performance of applied AI techniques in a) training and b) testing. 

 

Figure 7 shows error prediction for each method observed in both the training phase and the testing 

phase. Overall, the results clearly support the applicability of GA and ANN to predict the complex nature 

of fire-induced spalling in RC columns with high precision. This can be attributed to the nature of these 

techniques in which they can better comprehend complex phenomenon than that of traditional MLR. 

Surprisingly, predictions obtained from ANFIS are much poorer than that from ANN and GA, even though 

this technique acts in a similar form to ANN. This could be related to the different nature of this computing 

technique and the limited number of input data points (i.e. 89 fire tests) used to analyze this phenomenon.  
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Figure 7. The error performance of AI-based techniques 

 

In practice, engineers can apply the models presented in this research and listed in Table 3 (as well 

as companion works (Naser, 2019; Naser & Seitllari, 2019)) to evaluate the tendency of concrete columns 

to spall under fire. These models comprehend the vulnerability of RC columns to fire-induced spalling and 

may provide an easy tool to researchers and engineers given that there is a serious lack of 

methods/approaches that can be used to predict the occurrence of fire-induced spalling. In fact, current fire 

codes and standards still do not provide any assessment methods/approaches to evaluate fire-induced 

spalling in concrete. The developed expressions can serve as a benchmark (i.e. first generation) to realize 

such methods/approaches. We are confident that the methodology carried out herein can be utilized to refine 
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the developed models upon the availability of new datasets measured in fire tests. While this section 

delivered a picture of statistically influencing factors that govern the occurrence of fire-induced spalling in 

concrete structures, it is worth noting that a more comprehensive review on other influencing parameters 

such as mix proportion (e.g. cement type, degree of moisture content, fibers, admixtures, etc.), grade, size 

and type (FRP vs. steel) of internal reinforcement, restraint conditions, maximum temperature reached, 

cooling phase, etc.) should also be used to investigate spalling behavior of concrete structures.  

 

Table 3. The computed model expressions to be used for evaluating the spalling occurrence on RC columns. 

Technique Model details 

F
ir

e-
in

d
u
ce

d
 s

p
al

li
n
g
 

MLR 𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔 = 2.213 − 11.39 × 10−3𝑓𝑐 − 71 × 10−5𝐵𝑟𝑐 − 10−7𝑒 − 99 × 10−6𝑃  

ANN 

 Weight matrix for the hidden layer (WH) 

Bias vector 

for the 

hidden 

layer (bH)+ 

Weight 

vector of 

the output 

layer (W0) 

Bias for 

the output 

layer (b0) 

Element/

neuron 

no. in 

each 

layer 

1 2 3 4 

1 -2.84 4.9 -5.74 -1.04 -0.97 -1.55 -0.6 

2 -1.51 -11.1 1.04 0.23 5.65 -2.65  
3 -0.28 -5.6 -4.12 -0.97 6.06 0.64  
4 -5.23 1.2 3.76 -0.42 0.91 1.4  
5 -1.53 -8.83 1.16 0.97 3.33 1.71  

 

ANFIS 

Epoch 

number 

Number of 

membership 

functions 

Membership 

functions type 
Fuzzy type 

5 2-2-2-2 Gaussian Sugeno 
 

GA* 

𝑆𝑝𝑎𝑙𝑙𝑖𝑛𝑔 = 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (473.3 −
248191.5 sin(𝐵𝑟𝑐)−112.76𝑒 sin(−8.286𝑒−8.286𝑃)−112.8𝑃𝑠𝑖𝑛(−8.286𝑒−8.286𝑃)

146−𝑒−𝑃
− 6.89𝑓𝑐 −

97.3 sin (
3.38𝑒+3.38𝑃

𝑓𝑐
))  

*Note: this model was developed to yield 0 for No spalling, and 1 for Spalling and the logistic function used 

is 𝟏/(𝟏 + 𝒆−𝒙). This equation is also provided in a spreadsheet that is accompanying this work.  
+ When the ANN tabulated data are used to feed the ANN structure, one must follow Figure 2 details. 

 

6.0 Conclusions  
This study explores the merit of utilizing various artificial intelligence (AI) techniques to develop 

high precision procedures (models) with the ability to predict the occurrence of fire-induced explosive 

spalling in RC columns. These models are easy-to-implement and implicitly account for temperature-

dependent material degradation. Other conclusions, as obtained from this work, are listed herein: 

• Integrating AI-based methodologies seems to be effective in evaluating the response of structural 

members under fire conditions. These methodologies are particularly useful to identify the 

vulnerability of RC columns to fire-induced spalling.   

• Both genetic algorithms and neural networks capture the tendency of RC columns to spall under 

fire conditions with high precision; outperforming ANFIS and MLR techniques.  
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• A proper AI analysis requires the availability of wealth of data points and/or observations obtained 

from fire tests. To this day, few works reported the outcome of fire tests, with special consideration 

to fire-induced spalling or examining various geometric, material and loading features that may 

directly affect the occurrence of spalling. 
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List of Symbols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brc Width of RC column, (mm) 

e Eccentricity of loading, (mm) 

P Magnitude of applied loading, (kN) 

fc Concrete strength (MPa) 

z The total number of datasets 

𝑚𝑖 Measured output 

𝑝𝑖 Estimated output 

pavg Average estimate output 

𝑒𝑖 Error for each input set 

WH Interconnection weights for hidden layers 

WO Interconnection weights for output layers 

bH Biases for hidden layers 

bO Biases for output layers 

𝑥, 𝑦 Input variables 

𝐴, 𝐵 Linguistic labels 

𝑎, 𝑏 and 𝑟 Output function parameters 

µ𝑖(𝑥) ith the output of the 1st layer 

x Input to a node 

𝛼1, 𝛽1, 𝛿1 Bell function variables 

𝑊𝑖 The ith output of the second layer 

µ𝑘𝑖(𝑥) , µ𝑙𝑖(𝑦) Combinations of signals from layer 1 

𝑊̅ Normalized output from layer 3 

𝑎𝑖 , 𝑏𝑖,𝑐𝑖 Parameter set 

MSE Mean-squared error 

MARE Mean absolute relative error 

R2 Coefficient of determination 
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Appendix  

Reference Considered inputs 

Observatio

n 

Applied modeling technique 

  

fc 

(MPa

) 

Brc 

(mm) 

e 

(mm)

* 

P 

(kN

) 

MLR ANN ANFIS GA 

(Rodrigue

s et al., 

2010) 

23.8 250 0 686 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

25.1 250 0 686 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

27 250 0 686 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

29.4 250 0 686 Spalling No spalling 
No 

spalling 

No 

spalling 
Spalling 

(Buch 

and 

Sharma, 

2019) 

27 300 20.03 544 Spalling No spalling Spalling 
No 

spalling 
Spalling 

28 300 0 544 Spalling No spalling Spalling 
No 

spalling 
Spalling 

28 300 20.03 532 Spalling No spalling Spalling 
No 

spalling 
Spalling 

31 300 39.84 567 Spalling No spalling Spalling Spalling Spalling 

31 300 39.84 567 Spalling No spalling Spalling Spalling Spalling 

32 300 20.03 579 Spalling No spalling Spalling 
No 

spalling 
Spalling 

58 300 20.03 892 Spalling Spalling Spalling Spalling Spalling 

60 300 39.84 892 Spalling Spalling Spalling Spalling Spalling 

67 300 20.03 996 Spalling Spalling Spalling Spalling Spalling 

69 300 0 
100

8 
Spalling Spalling Spalling Spalling Spalling 

69 300 20.03 973 Spalling Spalling Spalling Spalling Spalling 

(Shah and 

Sharma, 

2017) 

34 300 0 
117

0 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

34 300 0 
117

0 
No spalling No spalling Spalling 

No 

spalling 
No spalling 

34 300 0 
117

0 
No spalling No spalling Spalling 

No 

spalling 
No spalling 

34 300 0 
117

0 
No spalling Spalling Spalling Spalling No spalling 

34 300 0 
117

0 
Spalling No spalling Spalling 

No 

spalling 
No spalling 

34 300 0 
117

0 
Spalling No spalling Spalling 

No 

spalling 
No spalling 

63 300 0 
185

8 
Spalling Spalling Spalling Spalling Spalling 

63 300 0 
185

8 
Spalling Spalling Spalling Spalling Spalling 

(Lie and 

Woollerto

n, 1988) 

34.2 305 0 0 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

34.8 305 0 
177

8 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 
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36.9 305 0 
133

3 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

37.6 305 0 
106

7 
Spalling Spalling Spalling Spalling Spalling 

37.9 305 24.97 
117

8 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

38.3 305 0 
133

3 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

39.3 305 0 
100

0 
No spalling Spalling Spalling Spalling No spalling 

39.9 305 0 
177

8 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

41.6 305 0 342 Spalling No spalling 
No 

spalling 

No 

spalling 
Spalling 

42.1 203 0 756 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

42.5 305 0 947 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

43.6 305 0 
104

4 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

46.6 305 0 
107

6 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

34.2 305 0 800 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

35.4 305 0 916 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

40.9 305 0 800 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

42.5 305 0 
141

3 
No spalling Spalling Spalling Spalling No spalling 

35.1 305 0 711 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

36.9 305 0 
106

7 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

42.6 305 0 978 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

52.9 305 0 
117

8 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

37.1 305 0 
133

3 
No spalling Spalling Spalling Spalling No spalling 

39.9 305 24.97 
100

0 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

40.7 406 0 0 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

49.5 305 0 
106

7 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

38.8 406 0 
241

8 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

42.3 203 0 169 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

36.1 305 0 
106

7 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 
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38.4 406 0 
279

5 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

39.6 305 0 800 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

46.2 406 0 
297

8 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

(Myllyma

ki and 

Lie, 

1991) 

37.8 300 0 
140

0 
Spalling No spalling Spalling 

No 

spalling 
Spalling 

(Kodur et 

al., 2000) 

86 406 0 
240

6 
Spalling Spalling Spalling Spalling Spalling 

89.6 406 0 
293

4 
Spalling Spalling Spalling Spalling Spalling 

96 406 0 
491

9 
Spalling Spalling Spalling Spalling Spalling 

119.7 305 0 
236

3 
Spalling Spalling Spalling Spalling Spalling 

119.7 305 0 
295

4 
Spalling No spalling 

No 

spalling 

No 

spalling 
Spalling 

119.7 305 24.97 
295

4 
Spalling No spalling 

No 

spalling 

No 

spalling 
Spalling 

126.5 406 0 
291

3 
Spalling Spalling Spalling Spalling Spalling 

99.7 406 0 
308

0 
Spalling Spalling Spalling Spalling Spalling 

(Kodur et 

al., 2001) 

40.2 305 24.97 
100

0 
No spalling Spalling Spalling Spalling No spalling 

40.2 305 0 
150

0 
Spalling Spalling Spalling Spalling Spalling 

68.9 305 0 
180

0 
No spalling Spalling Spalling Spalling No spalling 

68.9 305 0 
220

0 
Spalling Spalling Spalling Spalling Spalling 

68.9 305 24.97 
150

0 
Spalling No spalling Spalling 

No 

spalling 
Spalling 

73.4 305 0 
180

0 
Spalling Spalling Spalling Spalling Spalling 

73.4 305 0 
220

0 
Spalling Spalling Spalling Spalling Spalling 

73.4 305 24.97 
150

0 
Spalling Spalling Spalling Spalling Spalling 

72.7 305 0 
200

0 
No spalling Spalling Spalling Spalling No spalling 

72.7 305 0 
130

0 
Spalling Spalling Spalling Spalling Spalling 

99.6 305 0 
200

0 
Spalling Spalling Spalling Spalling Spalling 

99.6 305 0 
200

0 
Spalling Spalling Spalling Spalling Spalling 
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99.6 305 0 
300

0 
Spalling Spalling Spalling Spalling Spalling 

119.7 305 0 
197

9 
Spalling Spalling Spalling Spalling Spalling 

(Kodur, 

McGrath, 

Leroux, 

and 

Latour, 

2005) 

85 406 0 
389

5 
No spalling No spalling 

No 

spalling 

No 

spalling 
No spalling 

85 406 0 
432

8 
Spalling Spalling Spalling Spalling Spalling 

85 406 0 
432

8 
Spalling Spalling Spalling Spalling Spalling 

114 406 0 
456

7 
Spalling No spalling Spalling 

No 

spalling 
Spalling 

114 406 0 
537

3 
Spalling Spalling Spalling Spalling Spalling 

114 406 0 
354

6 
Spalling No spalling 

No 

spalling 

No 

spalling 
Spalling 

138 406 26.94 
423

3 
Spalling Spalling Spalling Spalling Spalling 

138 406 26.94 
498

1 
Spalling Spalling 

No 

spalling 

No 

spalling 
Spalling 

138 406 26.94 
498

1 
Spalling Spalling Spalling Spalling Spalling 

40.2 305 0 930 No spalling No spalling 
No 

spalling 

No 

spalling 
No spalling 

138 406 26.94 
498

1 
Spalling Spalling Spalling Spalling Spalling 

72.7 305 24.97 
120

0 
Spalling Spalling Spalling Spalling Spalling 

Note: the highlighted columns were randomly selected, statistically evaluated and included in testing dataset. 

*The exponential of measured eccentricity value was used for developing MLR, ANN and ANFIS models. 
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