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Abstract 7 

Despite ongoing research efforts, we continue to fall short of arriving at a consistent representation 8 

of fire-induced spalling of concrete. This is often attributed to the complexity and randomness of 9 

spalling as well as our persistence in favoring traditional approaches as a sole mean to examine 10 

this phenomenon. With the hope of bridging this knowledge gap, this paper demonstrates how 11 

utilizing surrogate modeling via data science and machine learning algorithms can provides us 12 

with valuable insights into fire-induced spalling. In this study, nine algorithms namely; Naive 13 

Bayes, generalized linear model, logistic regression, fast large margin, deep learning, decision tree, 14 

random forest, gradient boosted trees, and support vector machine, are applied to analyze 15 

observations obtained from 185 fire tests (collected over the last 65 years). The same algorithms 16 

were also applied to identify key features that govern the tendency of fire-induced spalling in 17 

reinforced concrete columns and to develop tools for instantaneous prediction of spalling. The 18 

results of this comprehensive analysis highlight the merit in utilizing modern computing 19 

techniques in structural fire engineering applications given their extraordinary ability to 20 

comprehend multi-dimensional phenomena with ease, high predictivity, and potential for 21 

continuous improvement.  22 

 23 
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1.0 Introduction 26 

Fire-induced spalling continues to be a problem of high interest to the structural fire engineering 27 

and safety community (Kodur 2018; Missemer et al. 2019). This is attributed to the fact that not 28 

only spalling has the potential to cause damage at the member level, but may also trigger partial, 29 

and in few instances complete, collapse of structural systems (Meacham et al. 2009). Given the 30 

resiliency of concrete to extreme loadings; and hence its favorable use in various constructions, 31 

the propensity of concrete to spall when heated complicates the design of concrete structures. Such 32 

complications arise from: 1) inadequate recognition to this phenomenon in codal provisions, and 33 

2) the lack of calculation/prediction methods that can be applied to examine the vulnerability of 34 

concrete structures  to spalling (ACI216.1 2014; BSI and European Committee for Standardization 35 

2004). The above two observations can be credited to the absence of a comprehensive 36 

understanding of fire-induced spalling – a notion that has been duly noted by a number of notable 37 

studies (Ali et al. 2004; Kalifa et al. 2001; Kodur and Naser 2020; Liu et al. 2018; Naser 2019a; 38 

Phan 2008).  39 

On the positive side, a collection of observations from previous works have qualitatively 40 

demonstrated few generalizations of spalling phenomenon. For instance, structural members made 41 

of high strength concrete made (of compressive strength about or exceeding 45 MPa) seem to be 42 

more vulnerable to spall than those made of normal strength concrete (Kodur et al. 2001). 43 

Similarly, axially loaded members have been noted to spall more so than flexurally loaded 44 

members (Dotreppe et al. 1997; Naser 2019b). Further, columns with conventional ties (hooked at 45 

90°) seem to have lower resistance to spalling than columns with improved hooked configurations 46 
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(i.e. hooked at 135°) (Kodur et al. 2013). More recently, the use of steel and polypropylene fibers 47 

were also noticed to have a positive influence on limiting spalling of concrete (Kalifa et al. 2001).  48 

Based on the aforementioned generalizations, some attempts presented methodologies to evaluate 49 

fire-induced spalling in concrete structures (Dwaikat and Kodur 2009; Jansson 2008; Kodur and 50 

Dwaikat 2008; Zhao et al. 2014). However, these methods remain: 1) only applicable to certain 51 

scenarios, 2) require development of highly complex/multi-stage finite element models, 3) lack 52 

proper validation, and 4) involve a number of assumptions that oversimplify the phenomenon of 53 

spalling (Bazant 1997; Liu et al. 2018; Peng 2000; Phan and Carino 2002; Sanjayan and Stocks 54 

1993). As such, the applicability of such approaches remains limited and inadequate to 55 

practical/real scenarios and to this date, we still lack a well-established approach that can be 56 

followed to examine the tendency of a reinforced concrete (RC) member to spall (Ali et al. 2004; 57 

Kalifa et al. 2001; Liu et al. 2018; Naser 2019a; Phan 2008).    58 

On another note, the lack of a general understanding and/or an approach that can be applied to 59 

predict fire-induced spalling of concrete also stems from the complexity and randomness of this 60 

phenomenon. On one side, spalling is expected to be governed by a multitude of factors spanning 61 

a multi-dimensional paradigm (i.e. covering: material, geometric, and heating/loading features). 62 

This brings in issues on two fronts. The first, the uniqueness of this phenomenon implies the need 63 

for a state-of-the-art, comprehensive, and collaborative research that is properly designed and 64 

executed – sadly, reports from recent efforts proved that pursuing such a program is challenging 65 

to arrange or plan (Hertz 2003; Kalifa et al. 2001; RILEM 1994). The second front can be summed 66 

by the fact that the majority of available incremental works, which primarily applied traditional 67 

engineering methods, do not seem to properly converge – due to differences in testing set-ups, 68 
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materials compositions, assumptions used in modeling/deriving theories etc. (Bazant 1997; Gawin 69 

et al. 2018; Liu et al. 2018; Peng 2000; Phan and Carino 2002; Sanjayan and Stocks 1993). 70 

This opens up an opportunity to attempt to examine fire-induced spalling phenomenon through a 71 

perspective that is built on a modern hypothesis. This proposition states that if spalling 72 

observations are compiled from actual fire tests, then it is possible to link such observations to 73 

material, geometric, and heating/loading characteristics of fire-tested structural members via 74 

surrogate modeling (often used when the outcome of interest cannot be easily directly measured, 75 

so a model of the outcome is applied instead). In this scenario, this linkage (relation) between all 76 

involved factors is highly nonlinear and hence arriving at such a relation may not be possible using 77 

traditional engineering methods; however, could still be arrived at using data science and machine 78 

learning (DS+ML) as these techniques are specifically designed to unbox hidden relations/patterns 79 

embodied in large sets of data (Naser 2020). At the time of this work, very few studies applied 80 

technologies such as artificial neural networks (ANNs) to examine the fire-induced spalling 81 

phenomenon (i.e. (McKinney and Ali 2014)). Unfortunately, these studies share common features: 82 

1) applied outdated approaches, 2) examined limited number of specimens, and 3) did not fully 83 

utilize a variety of algorithms or contemporary analysis solutions.  84 

This work utilizes advanced computations (data science) and machine learning algorithms namely; 85 

Naive Bayes, generalized linear model, logistic regression, fast large margin, deep learning, 86 

decision tree, random forest, gradient boosted trees, and support vector machine, to analyze 87 

spalling observations from 185 fire tests carried out on full scale reinforced concrete (RC) 88 

columns. This work also utilizes the above algorithms to identify critical parameters/features that 89 

govern the fire-induced spalling of RC columns as to enable developing tools that can 90 
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instantaneously predict such phenomenon with high accuracy. Given that the collected data: 1) 91 

was obtained from actual fire tests (rather than simulated/controlled responses), and 2) was 92 

analyzed through novel algorithms, then the results of this comprehensive analysis is expected to 93 

truly capture actual spalling tendency in RC columns. 94 

  95 

2.0 An Overview to Data Science and Machine Learning Algorithms   96 

This section provides an overview on data science and machine learning algorithms given that the 97 

majority of structural fire and safety researchers/practitioners may not be commonly exposed to 98 

such techniques given the nature of their training and work atmosphere. Thus, a succinct overview 99 

is presented herein and an in-depth review can be found elsewhere (Jordan and Mitchell 2015; 100 

Schmidhuber 2015).  101 

Data science, often referred to as data mining and/or data analytics, is a multi-disciplinary field 102 

that applies novel scientific methods and frameworks to process observations and to develop 103 

algorithms and systems that can be efficiently used to extract meaningful knowledge and insights 104 

from collected datapoints; often relating to actual/real phenomena (Dhar and Vasant 2013). The 105 

process of data science can be summarized by the flowchart shown in Fig. 1. In this flowchart, 106 

utilizing data science starts by formulating a hypothesis and then collecting raw data on a given 107 

phenomenon (i.e. fire-induced spalling). This data is then pre-processed (cleansed) to remove 108 

outliners/noise. Afterwards, the cleansed data is investigated using a (or a collection of) 109 

algorithm(s)/technique(s) to arrive at a suitable model to predict the phenomenon in hand. When 110 

necessary, the developed model can be further enhanced for improved optimization and 111 

predictability. Then, the validated model can be applied into real world applications. Finally, the 112 
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applied model can undergo a series of upgrades (tunings) given new datapoints and/or through 113 

addition of new observations etc. 114 

 115 
 116 

Fig. 1 Typical data science “machine learning” process 117 

 118 

Machine learning is a subset of data science and primarily focuses on the ability of machines to 119 

receive, understand and learn datapoints to identify key features in order to arrive at a suitable 120 

representation that best demonstrates the phenomenon embodied within a dataset (Sayad et al. 121 

2019). Machine learning can come in handy in practical scenarios, where mathematical or 122 

conventional modelling approaches become obsolete as a result of limitation of precise reasoning 123 

in modeling multi-dimensional problems and uncertainties arising from the complexity of a given 124 

phenomenon etc. Machine learning can be broadly grouped into supervised, unsupervised and 125 

semi-supervised learning based on the type of available datapoints (i.e. labeled/not labeled etc.) as 126 

well as type of phenomenon under investigation (regression, classification etc.) (Bishop 2006). A 127 

number of machine learning algorithms have been developed over the past few years and those of 128 
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interest to this work are highlighted herein. It is worth noting that predicting spalling tendency 129 

falls into a supervised classification investigation.  130 

 131 

2.1 Naive Bayes 132 

Naive Bayes (NB), an algorithm commonly used in supervised classification problems, is easy to 133 

develop, construe and apply to large dataset. This algorithm allows constructing rules that serve 134 

for predicting observations (i.e. column spalled/did not spall) and does not require complicated 135 

iterative procedure (but still involve evaluating a series of conditional probabilities). In this 136 

algorithm, a set of attributes, i.e. x1, …, xn (such as compressive strength of concrete etc.), for a 137 

fire-exposed RC column can be grouped under a class observation – Y (e.g. column spalls). This 138 

arrangement aims to maximize the posterior probability of the class variable given the set of 139 

attributes through the following relations (Shiri Harzevili and Alizadeh 2018): 140 

 141 

𝑎𝑟𝑔 𝑚𝑎𝑥𝑃𝑐∈𝐶(𝑌|𝑥1, … , 𝑥𝑛)        (1) 142 
 143 

The application of Bayes rule in classification is formulated as: 144 

 145 

𝑃𝑐∈𝐶(𝑌|𝑥1, … , 𝑥𝑛) =  
𝑃(𝑌)𝑃(𝑥1,…,𝑥𝑛|𝑌)

𝑃(𝑥1,…,𝑥𝑛|𝑌)
       (2) 146 

 147 

and further simplifies to: 148 

 149 

𝑎𝑟𝑔 𝑚𝑎𝑥𝑃𝑐∈𝐶(𝑌) ∏ 𝑃(𝑥𝑖|𝑌)𝑛
𝑖=1        (3) 150 

 151 

2.2 Generalized linear model 152 

The generalized linear model (GLM) extends traditional linear models through fitting generalized 153 

linear models by maximizing the log-likelihood of a dataset. The GLM fitting computation is 154 

quick, and efficiently scales for phenomena with limited predictors; especially those having non-155 
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zero coefficients. In this algorithm, the outcome class (Y) of a phenomenon is assumed to be a 156 

linear combination of the coefficients (β) and attributes (x1, …, xn) such that: 157 

 158 

𝑌 = 𝛽0 + 𝛽1𝑥1,𝑖 + ⋯ + 𝛽𝑛𝑥𝑛,𝑖       (4) 159 

 160 

This model is often supplemented with a function that determines how the mean depends on the 161 

linear predictors and a variance function that describes how the variance depends on the mean.  162 

 163 

2.3 Logistic regression 164 

Logistic regression chooses to maximize the likelihood of observing an event and hence is often 165 

used in scenarios where the outcome of a phenomenon is dichotomous (binary). This algorithm 166 

approximates the multi-linear regression function shown below: 167 

 168 

 𝑙𝑜𝑔𝑖𝑡(𝑝) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛        (5) 169 

 170 

where p is the probability of presence of the event (i.e. spalled/did not spall). The logit 171 

transformation is defined as the logged odds: 172 

 173 

𝑜𝑑𝑑𝑠 =
𝑝

1−𝑝
          (6) 174 

 175 

and, 176 

 177 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1−𝑝
)         (7) 178 

 179 

2.4 Fast large margin 180 

Fast large margin (FLM) algorithm seeks to minimize error rate as well as to separate the outcome 181 

of an observation (i.e. spalling, no spalling) by the largest probable margin. As such, this algorithm 182 

often achieves a good generalization on new datapoints. FLM can be applied through the following 183 

relation (Cheng et al. 2009): 184 
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 185 

∀𝑠 ≠ 𝑦, 𝐷(𝑥, 𝑦) > 𝐷(𝑥, 𝑠) + 𝑝𝐻(𝑠, 𝑦)        (8) 186 

 187 

where, (x, y) denotes an observation sequence and its ground correct label, H(s, y) is the 188 

Hamming distance between two hidden state sequences of the same length, and ρ is a constant 189 

margin scaling factor that is greater than zero. 190 

 191 

2.5 Deep learning 192 

Deep learning (DL) is another supervised learning algorithm that learn iteratively. This technique 193 

consists of a number of layers: an input layer, multi-intermediate layers, and an output layer 194 

(Shahin et al. 2009). Each of these layers contains a number of neurons that process datapoints. 195 

DL mimics human brain and cognitive processing and hence has the ability to work on incomplete 196 

data and to perform analysis in a parallel computing platform. DL can be applied in binary and 197 

multi-outcome problems as can be seen below (Behnood and Golafshani 2018). 198 

 199 

netj = ∑ Iniwij

n

i=1
+ bj         (9) 200 

Y = f(netj)            (10) 201 

  202 

where, Ini and bj are the ith input signal and the bias value of jth neuron, respectively, wij is 203 

the connecting weight between ith input signal and jth neuron and f is an activation function such 204 

as hyperbolic tangent sigmoid. 205 

 206 

2.6 Decision tree 207 

A decision tree (DT) is a support tool that utilizes a tree-like model comprising of decisions and 208 

their possible consequences. Such a tree is produced by splitting a dataset into branch-like 209 

arrangement where a decision tree starts at a root node. DT is favorable in classification problems 210 

as it provides schematic representation of the outcome of analysis, thus becoming of high value to 211 
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trace specifics in a given DT simulation (Safavian and Landgrebe 1991). Depending on the 212 

observation in hand, impurity measures (e.g. Gini) can be used to process datapoints. For example, 213 

for a node t, Gini index g(t) is defined as (Chou et al. 2014): 214 

𝑔(𝑡) = ∑ 𝑝(𝑗|𝑡)𝑝(𝑖|𝑡)
𝑗≠𝑖

         (11) 215 

  216 

where i and j are target field categories. 217 

 218 

𝑝(𝑗|𝑡) =
𝑝(𝑗,𝑡)

𝑝(𝑡)
;𝑝(𝑗𝑡) =

𝜋(𝑗)𝑁𝑗(𝑡)

𝑁𝑗
; and 𝑝(𝑡) = ∑ 𝑝(𝑗,𝑡)

𝑗
      (12) 219 

where, π(j) is the prior probability for category j, Nj(t) is the number of records in 220 

category j of node t, and Nj is the number of records of category j in the root node.  221 

 222 

2.7 Random forest 223 

Random forest (RF) is an algorithm that capitalizes on principles of ensemble learning (in which 224 

a specific algorithm is applied multiple times in an analysis, and/or where different types of 225 

algorithms are joined together to form a more powerful prediction model) (Liaw and Wiener 2002). 226 

A typical formulation of RF is presented herein: 227 

 228 

𝑌 =
1

𝐽
∑ 𝐶𝑗,𝑓𝑢𝑙𝑙

𝐽
𝑗=1 + ∑ (

1

𝐽
∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑗(𝑥, 𝑘)𝐽

𝑗=1 )𝐾
𝑘=1      (13) 229 

 230 

where, J is the number of trees in the forest, k represents a feature in the observation, K is 231 

the total number of features, cfull is the average of the entire dataset (initial node). 232 

 233 

2.8 Gradient boosted trees 234 

Gradient boosted trees (GBT) is a machine learning technique that forms an ensemble of DT 235 

models of low prediction ability through optimization of an arbitrary-developed differentiable loss 236 

function (see Eq. 9). GBT only uses a small part of training datasets for increasing computation 237 

speed and accuracy of prediction. GBT iteratively corrects developed ensembles by comparing 238 
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iterative predictions against true observations. As such, the next iteration will help correct for 239 

previous mistakes. 240 

 241 

𝑌 = ∑ 𝑓𝑘(𝑥𝑖)𝑀
𝑘=1 , 𝑓𝑘 ∈ 𝐹 = {𝑓𝑥 = 𝑤𝑞(𝑥), 𝑞: 𝑅𝑝 → 𝑇, 𝑤 ∈ 𝑅𝑇}    (14) 242 

 243 

 where, M is additive functions, T is the number of leaves in the tree, w is a leaf weights 244 

vector, wi is a score on i-th leaf, and q(x) represents the structure of each tree that maps an 245 

observation to the corresponding leaf index (Intel 2019). 246 

 247 

2.9 Support vector machine 248 

Support vector machine (SVM) is an algorithm that can be used in classification. SVM determines 249 

the best method to distinguish between classes in the training data. SVM is very accurate and this 250 

accuracy comes as a result of intensive calculations (Hou et al. 2018). An interesting feature of 251 

SVM is that errors smaller than a set threshold (hinge loss) ε do not contribute to the overall error 252 

measure such that: 253 

 254 

𝐿(𝑌𝑖 − 𝑌𝑖̂) = {
0 if|𝑌𝑖 − 𝑌𝑖̂| < ϵ

|𝑌𝑖 − 𝑌𝑖̂| − ϵ if|𝑌𝑖 − 𝑌𝑖̂| > ϵ
       (15) 255 

 256 

SVM seeks to fit a model of the form, 257 

 258 

𝑌̂(𝑥) = ∑ 𝑐𝑖𝑘(𝑥, 𝑥𝑖)𝑁
𝑖=1          (16) 259 

 260 

where, the parameters ci are referred to as choice coefficients, and k(x, xi) is defined as 261 

the Gaussian kernel function (Young et al. 2019).   262 

 263 

3.0 Rationale and Database Development  264 

Performing a fire-based data science/machine learning (DS+ML) analysis is quite different than 265 

traditional analysis methods (i.e. hand calculations, finite element/difference simulations etc.), in 266 
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which the former does not require discretization, temperature-dependent material 267 

properties/constitutive models nor a multi-stage (hydro, thermal and structural) analysis. In 268 

DS+ML, fire-induced spalling can be evaluated through intelligent algorithms that analyze fire 269 

test observations to arrive at an understanding of this phenomenon.  270 

The rationale behind utilizing DS+ML to examine fire-induced spalling of RC columns stems from 271 

the following hypothesis, “if spalling observations are collected from fire tests, then it is possible 272 

to apply intelligent algorithms to analyze such observations to arrive at an understanding of 273 

spalling – or at the very least to identify the key factors that influence this phenomenon”. Since a 274 

number of factors (i.e. compressive strength, restraint conditions etc.) have already been shown to 275 

influence occurrence of spalling in RC columns, and yet we do not actually know the quantitative 276 

importance of such factors (from spalling point of view), then analyzing this dilemma through 277 

DS+ML becomes attractive as such techniques are primarily developed to solve complex real 278 

world phenomena. As utilizing DS+ML to evaluate a phenomenon (which in this case is fire-279 

induced spalling) requires the availability of a well-prepared database, thus a comprehensive 280 

literature review was carried out to locate commissioned fire testing reports as well as research 281 

works that tested RC columns under standard fire conditions (Dotreppe et al. 1997; Hass 1986; 282 

Hertz 2003; Khoury 2000; Kodur et al. 2001; Kodur 2018; Kodur and McGrath 2003; Lie and 283 

Woollerton 1988; Liu et al. 2018; Myllymaki and Lie 1991; Rodrigues et al. 2010; Schneider 1988) 284 

(see Fig. 2).  285 
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 286 

Fig. 2 Framework of proposed methodology 287 

 288 

This literature survey focuses on collecting datapoints on material, geometric, and loading aspects 289 

of each of the tested columns as well as occurrence of spalling. The developed database compiled 290 

data on 248 fire tests, all of which were conducted on full scale RC columns and spanned the time 291 

period between 1953-2018. Due to differences between researchers’ backgrounds, as well as 292 

norms of documentation at the time of reporting outcome of fire tests – some studies did not report 293 

information on certain features, and thus only 185 RC columns were deemed suitable for analysis. 294 

For the sake of this study, all selected columns were tested under standard fire conditions, thus 295 

neutralizing the effect of varying thermal/heating loading. In addition, this work maintains the 296 

common notion of identifying spalling qualitatively and with binary notion (spalling/no spalling) 297 

due to the absence of actual measurements during collected tests and/or tools to quantitatively 298 

measure fire-induced spalling.  299 

The collected data on these columns covered 10 independent parameters: strength of concrete, fc, 300 

cross sectional breadth and height, b and d, boundary conditions, k, tie spacing, s, tie diameter, d, 301 

steel reinforcement ratio, r, magnitude, P, and eccentricity of applied loading, e. This collection of 302 
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observations is then arranged into a database. For convenience, the compiled database is provided 303 

herein and is listed in Table 1. This database is compiled from the works of Lie and Woollerton 304 

(Lie and Woollerton 1988), Buch and Sharma (Buch and Sharma 2019), Shah and Sharma (Shah 305 

and Sharma 2017), Myllymi and Lie (Myllymaki and Lie 1991), Rodrigues et al. (Rodrigues et al. 306 

2010), Kodur et al. (Kodur et al. 2001, 2005, 2003), Thomas and Webster (Thomas and Webster 307 

1953), as well as Davey and Ashton (Davey and Ashton 1953). Full details on these specimens 308 

can be found in their respective references.  309 

 310 

4.0 Data Science and Machine Learning (DS+ML) Analysis 311 

Now that the database is compiled, this database is ready to be analyzed using an observational 312 

DS+ML based approach. First, the database was randomly arranged to eliminate any biasness 313 

arising from a particular study/factor (feature). Then, the dataset was split into a model 314 

development set (for training and validation purposes) (80%) and a testing set (20%) which was 315 

used for evaluating performances of applied ML algorithms (Barber 2012). The database was then 316 

analyzed using the collection of ML algorithms listed in Sec. 2 (through commonly available codes 317 

(Brownlee 2019)). The outcome of this analysis is presented herein from two perspectives: 1) 318 

identified critical factors that triggers spalling from each algorithm’s point of view, and 2) 319 

comparison between algorithms’ accuracy in predicting spalling of RC columns. The importance 320 

of this analysis is to identify “which are the key factors with highest impact on spalling” to allow 321 

fire researchers/designers from easily evaluating the tendency of spalling with a level of 322 

confidence that is not currently available for them. For parallel works that use a much larger 323 

spectrum of factors, the readers may refer to the following (McKinney and Ali 2014; Naser 2019b; 324 

c; Naser and Seitllari 2019; Seitlllari and Naser 2019).   325 

https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525


This is a preprint draft. The published article can be found at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525 

 

Please cite this paper as:  

Naser M.Z. (2021). “Observational Analysis of Fire-induced Spalling through Data Science and Machine Learning.” 

ASCE Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525.   

15 

 

4.1 Critical factors governing fire-induced spalling phenomenon 326 

The DS+ML analysis can provide a preliminary view that is independent of the modeling 327 

algorithm into the global importance of each of the selected input variables as to predict spalling. 328 

For instance, Fig. 3a shows that breadth, b, tie spacing, s, applied loading, P, tie diameter, d, and 329 

compressive strength of concrete, fc are the main factors that affect spalling. Another visualization 330 

that can also be arrived at through this preliminary analysis is the correlation matrix. This matrix 331 

shows how each of the selected variables correlates to the occurrence of spalling (i.e. positively – 332 

increases likelihood of spalling, or negatively – reduces likelihood of spalling). For example, it 333 

can be seen that if the geometric size of a column increases, then such a column is more likely to 334 

spall due to the positive correlation between b and h with tendency to spalling (highlighted in 335 

green). Similarly, if tie diameter, d, or ratio of steel reinforcement, r, increases, then the column is 336 

expected to be less likely to spall (as there is a negative correlation between d and r with tendency 337 

to spalling – highlighted in red). Overall, the factors that seem to have a positive correlation with 338 

spalling (i.e. spalling is likely to occur if these factors increase) include: breadth and height of 339 

column, compressive strength of concrete, pinned restraint conditions, loading magnitude 340 

eccentricity and tie spacing. On the other hand, the factors with negative correlation to occurrence 341 

of spalling (i.e. an increase in these factors would reduce the tendency to spall and hence increase 342 

the tendency not to spall) include: cover distance, ratio of longitudinal reinforcement, and tie 343 

diameter.  344 
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 345 
Fig. 3 Basic outcome of DS+ML analysis  346 

 347 

In DS+ML analysis, it is common to cleanse a database in order to minimize effects of noise and 348 

outliners as well as to reduce the number of governing input parameters – while maintaining high: 349 

1) accuracy in understanding the phenomenon on hand, and 2) prediction capability. This process 350 

is often referred to as feature engineering and comprises of two components; feature generation 351 

and feature extraction. Feature generation is the process of combining two (or more) input 352 

parameters to yield a new parameter that has a much greater influence on undersetting or predicting 353 

the given phenomenon. On the other hand, feature extraction is a reduction process in which the 354 
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total dimension (i.e. 10 inputs) of spalling phenomenon is reduced to manageable groups (features) 355 

with the condition that these extracted features can still accurately and fluently describe the original 356 

dataset (listed in Table 1). Based on feature engineering process, interactions between extracted 357 

features and spalling tendency may turn much more important than those with highest correlations 358 

(i.e. shown in Fig. 3b) and hence the effect of feature engineering was investigated here. While the 359 

application of the feature engineering can be complex and resource intensive, fortunately, there is 360 

a number of pre-developed codes and software that can be applied to help facilitate carrying out 361 

such analysis (Matlab 2019).  362 

The outcome of the DS+ML analysis, when supplemented with feature engineering, is listed in 363 

Table 2 and is also plotted in Fig. 4. This outcome shows that the main re-occurring inputs between 364 

all applied algorithms are compressive strength of concrete and diameter of ties; followed by 365 

breadth of column and spacing of ties. It can be also seen that this analysis yields a slightly different 366 

outcome than that shown in Fig. 3a as it accounts for all interactions within each of the inputs (and 367 

not just inputs with the spalling as a phenomenon). By normalizing the results obtained from the 368 

above two analyses (with and without feature engineering), the outcome of this work shows that 369 

diameter of ties, compressive strength of concrete, breadth of column, and spacing of ties are the 370 

governing factors of fire-induced spalling in the RC columns examined herein – with all other 371 

factors having minor contributions (see Fig. 4). In other words, this analysis infers that it is possible 372 

to predict spalling in a RC column with high confidence through evaluating the identified four 373 

factors listed in Table 2 and highlighted in grey – rather than all 10 factors listed in Table 1; hence 374 

further simplifying prediction of fire-induced spalling as will be shown in Sec. 4.2. 375 

 376 
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Table 2 Outcome of DS+ML analysis with feature engineering 377 

 378 

 379 
Fig. 4 Overall importance of selected parameters to fire-induced spalling phenomenon 380 

 381 

4.2 Prediction of fire-induced spalling  382 

The DS+ML approach can also be used to develop tools that can instantaneously predict the 383 

occurrence of spalling in a given RC column using the ML algorithms discussed in Sec. 2.0. The 384 

development of such tools can be attractive in evaluating the tendency of a RC column to spall 385 

given the set of input parameters employed and shown in Table 1 or resulting from analysis using 386 

feature engineering. Overall, the selected algorithms achieved reasonable (72%) to high (89%) 387 

accuracy in predicting spalling phenomenon. A look into Fig. 5a shows that the gradient boosted 388 

trees (GBT) algorithm achieved the highest accuracy in predicting spalling of RC columns, 389 

followed by deep learning (DL) and support vector machine (SVM) algorithms.  390 

An interesting exercise is to assume that there is a RC column with features equal to that of average 391 

values of all observations (listed at the bottom of Table 1), and then predict spalling tendency of 392 

this column using each of the applied nine algorithms. These predictions are listed in Fig. 5b and 393 

show that it is very likely that this RC column is going to spall under fire conditions (with 71.3% 394 
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tendency to spall). In case fire designers/engineers employ similar tools, such a tool can be of 395 

tremendous help not only by providing a mean to evaluate propensity of a RC column to spall but 396 

also by allowing designers to identify cost-effective and efficient solutions to mitigate such 397 

spalling. For example, the GBT algorithm expects that this column would not spall if tie diameter 398 

is increased to 10 mm (from 8 mm), or if compressive strength is reduced to 26 MPa (from 45.1 399 

MPa) etc. given that all other parameters stay the same. In this case, any of these solutions can 400 

mitigate spalling and the chief engineer would have the flexibility to decide given specific aspects 401 

in his/her project (i.e. cost/availability/constructability of each solution). It should be noted that 402 

access to the developed models and database will be freely available at a permanent and dedicated 403 

webpage.  404 
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 405 
Fig. 5 Prediction outcome and capabilities of DS+ML 406 

 407 

4.3 A Note on DS+ML – from a fire engineering perspective  408 

It goes without saying that the outcome of a DS+ML analysis remains highly dependent on the 409 

available and quality of collected datapoints. Given that the database developed herein collects 410 

observations from 185 fire tests on RC columns, the outcome of this analysis is expected to 411 

properly represent fire-induced spalling in RC columns of various characteristics and 412 

configurations. Still, the size of this database is much smaller than those commonly used in other 413 

fields (i.e. medical etc.). While we may not be able to develop such massive databases of 1000’s 414 

of observations, due to the complex and restricted nature of fire testing, the developed database 415 
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can still be improved both vertically (i.e. by adding more observations from fire tests) as well as 416 

horizontally (by adding additional input parameters such as aggregate/fiber type etc.). A 417 

collaboration between various research groups and industry partners is foreseen as a mean to 418 

improve such database and hence is encouraged.  419 

While this work examined 10 independent parameters, other parameters such as mix proportions, 420 

moisture content, porosity, use of admixtures etc. which were also identified to have an influence 421 

on spalling phenomenon (Hertz 2003; Kodur 2018; Kodur et al. 2003; Maluk et al. 2017; Rickard 422 

et al. 2018), were not examined herein as: 1) information on these parameters were not 423 

available/reported, and 2) it is unlikely that RC columns tested by Thomas and Webster (Thomas 424 

and Webster 1953), as well as Davey and Ashton (Davey and Ashton 1953) which were carried 425 

out in early 1950s incorporated any modern additives or fibers nor measured porosity of concrete. 426 

Furthermore, it is worth noting that the bulk of the tested columns were of square shape, had similar 427 

length, grade of reinforcement, and tie configuration (90°) etc. and hence these parameters were 428 

not also examined as their influence is expected to be normalized across all specimens. It is worth 429 

noting that the phenomenon of spalling was also examined in companion studies (Naser 2019b) 430 

that mainly considered genetic programing (GP) as the main a tool for analysis. These studies still 431 

did not examine importance of input parameters nor application of other ML algorithms and were 432 

mainly interested in developing predictive expressions that can predict occurrence of spalling 433 

through GP-derived expressions. These expressions were derived through analysis of about 100 434 

RC columns and incorporated other parameters that were not considered herein (i.e. humidity, 435 

aggregate type etc.) as information on these inputs was not provided for the additional 85 of the 436 

RC columns utilized herein. 437 
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A final note is directed towards the fact that DS+ML analysis can be undertaken using 438 

commercially available workstations and software and hence does not require sophisticated/special 439 

processing units. In fact, this analysis can be carried out in a matter of seconds/minutes – depending 440 

on the algorithm selected for analysis and specifications of computing workstation. This allows a 441 

much faster and efficient prediction of spalling phenomenon via surrogate modeling. For example, 442 

the analysis shown herein was carried out on an Intel Core i7-9700K @ 3.6 GHz powered machine 443 

and took about 28 min from start to completion (including database organization and processing 444 

time for all nine algorithms). In this analysis, the fastest solution was obtained by Naive Bayes 445 

(8.7 seconds), and the longest was by Gradient Boosted Trees (466.9 seconds). It should be noted 446 

that while analysis speed is often regarded as a metric for evaluating performance of ML 447 

algorithms in the field of computer science, this metric is perhaps of limited relevance to this study. 448 

This metric could be of importance when applying DS+ML in future works to optimize fire design 449 

and/or predict response of large scale structural systems/buildings. 450 

With continuous improvement in software and hardware engineering, traditional assessment 451 

methods are expected to improve. However, this improvement may still fall short of reaching that 452 

obtained by DS+ML (given the versatility/accuracy/simplicity of the presented approach) or the 453 

notion that correlation always insinuates causation (which may or may not be true in all scenarios). 454 

At this point in time, it is expected that both assessment methods can be used in parallel and in 455 

conjunction. In all cases, readers of this work are advised to steer away from overfitting DS+ML 456 

models or pursue DS+ML analysis through “black box” software. 457 

 458 
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5.0 Conclusions 459 

This paper presents insights into the application of data science (DS) and machine learning (ML) 460 

algorithms to identify critical parameters governing fire-induced spalling of RC columns as well 461 

as developing assessment tools to predict this phenomenon. This study applied nine algorithms 462 

namely; Naive Bayes, generalized linear model, logistic regression, fast large margin, deep 463 

learning, decision tree, random forest, gradient boosted trees, and support vector machine, to 464 

analyze data from 185 fire tests carried out over the last 65 years on full scale reinforced concrete 465 

(RC) columns. The results of this comprehensive analysis show the potential of utilizing modern 466 

computing techniques in analyzing structural fire engineering phenomena given their high 467 

accuracy, ease of applications, and potential for continuous improvement. The following 468 

conclusions could also be drawn from the results of this study: 469 

• Diameter of ties, compressive strength of concrete, geometric features, and spacing of ties 470 

are the main governing factors of fire-induced spalling in RC columns. 471 

• Gradient boosted trees (GBT) algorithm achieved the highest accuracy (of 89%) in 472 

predicting spalling of RC columns, followed by deep learning (DL) and support vector 473 

machine (SVM) algorithms of 81% and 80%, respectively. Thus, optimizing these 474 

algorithms may lead to better examination of fire-induced spalling.  475 

• A number of challenges continue to limit the integration of DS+ML in the field of fire 476 

engineering and safety, such as scarcity of fire tests etc. Future works are encouraged to 477 

develop approaches and techniques (i.e. big data/small data analysis, advanced 478 

transformation of inputs etc.) to overcome such challenges. 479 
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Table 1 Compiled database used for DS+ML analysis 696 

Study 
Sp. 

Ref. 

b 

(mm) 

h 

(mm) 
r (%) 

fc 

(MPa) 
k 

C 

(mm) 

e 

(mm) 
P (kN) 

s 

(mm) 

d 

(mm) 

(Lie and 

Woollerton 1988) 
1a 305 305 2.19 34 FF 38 0 0 305 10 

(Lie and 

Woollerton 1988) 
2a 305 305 2.19 37 FF 38 0 1333 305 10 

(Lie and 

Woollerton 1988) 
3a 305 305 2.19 34 FF 38 0 800 305 10 

(Lie and 

Woollerton 1988) 
4a 305 305 2.19 35 FF 38 0 711 305 10 

(Lie and 

Woollerton 1988) 
5g 406 406 2.47 41 FF 38 0 0 406 10 

(Lie and 

Woollerton 1988) 
6g 203 203 2.75 42 FF 38 0 169 203 10 

(Lie and 

Woollerton 1988) 
7a 305 305 2.19 36 FF 38 0 1067 305 10 

(Lie and 

Woollerton 1988) 
8a 305 305 2.19 35 FF 38 0 1778 305 10 

(Lie and 

Woollerton 1988) 
9a 305 305 2.19 38 FF 38 0 1333 305 10 

(Lie and 

Woollerton 1988) 
10b 305 305 2.19 41 FF 38 0 800 305 10 

(Lie and 

Woollerton 1988) 
11b 305 305 2.19 37 FF 38 0 1067 305 10 

(Lie and 

Woollerton 1988) 
12b 305 305 2.19 40 FF 38 0 1778 305 10 

(Lie and 

Woollerton 1988) 
1e 305 305 2.19 42 PP 38 0 342 305 10 

(Lie and 

Woollerton 1988) 
2e 305 305 2.19 44 FF 38 0 1044 305 10 

(Lie and 

Woollerton 1988) 
3e 305 305 2.19 35 FF 38 0 916 305 10 

(Lie and 

Woollerton 1988) 
4d 305 305 2.19 53 FF 38 0 1178 305 10 

(Lie and 

Woollerton 1988) 
5d 305 305 2.19 50 FF 38 0 1067 305 10 

(Lie and 

Woollerton 1988) 
6c 305 305 2.19 47 FF 38 0 1076 305 10 

(Lie and 

Woollerton 1988) 
7c 305 305 2.19 43 FF 38 0 947 305 10 

(Lie and 

Woollerton 1988) 
8f 305 305 4.38 43 FF 38 0 978 305 10 

(Lie and 

Woollerton 1988) 
9f 305 305 4.38 37 FF 38 0 1333 305 10 

(Lie and 

Woollerton 1988) 
10g 406 406 2.47 39 FF 38 0 2418 406 10 

(Lie and 

Woollerton 1988) 
11g 406 406 3.97 38 FF 38 0 2795 406 10 
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(Lie and 

Woollerton 1988) 
12g 406 406 3.97 46 FF 64 0 2978 406 10 

(Lie and 

Woollerton 1988) 
1i 305 305 2.19 40 PP 38 0 800 305 10 

(Lie and 

Woollerton 1988) 
2i 305 305 2.19 39 PP 38 0 1000 305 10 

(Lie and 

Woollerton 1988) 
3k 305 305 2.19 40 FF 38 25 1000 305 10 

(Lie and 

Woollerton 1988) 
4j 305 305 2.19 38 FF 38 0 1067 305 10 

(Lie and 

Woollerton 1988) 
5h 305 457 2.22 43 FF 38 0 1413 305 10 

(Lie and 

Woollerton 1988) 
6h 203 914 1.22 42 FF 38 0 756 203 10 

(Lie and 

Woollerton 1988) 
14k 305 305 2.19 38 FF 38 25 1178 305 10 

(Kodur et al. 

2001) 

HSC

1 
406 406 2.42 92 FF 38 0 0 406 8 

(Kodur et al. 

2001) 

HSC

2 
406 406 2.42 127 PF 38 0 2913 406 8 

(Kodur et al. 

2001) 

HSC

3 
406 406 2.42 100 FF 38 0 3080 406 8 

(Kodur et al. 

2001) 

HSC

4 
406 406 2.42 90 PF 38 0 2934 406 8 

(Kodur et al. 

2001) 

HSC

5 
406 406 2.42 86 FF 38 0 2406 406 8 

(Kodur et al. 

2001) 

HSC

6 
406 406 2.42 96 FF 38 0 4919 406 8 

(Kodur et al. 

2001) 

HSC

7 
305 305 1.72 120 FF 41 0 1979 152 6 

(Kodur et al. 

2001) 

HSC

8 
305 305 1.72 120 FF 41 0 2363 76 6 

(Kodur et al. 

2001) 

HSC

9 
305 305 1.72 120 FF 41 0 2954 76 6 

(Kodur et al. 

2001) 

HSC

10 
305 305 2.42 120 PF 41 25 2954 76 6 

(Kodur et al. 

2005) 

TNC

1 
305 305 2.18 40 FF 40 0 930 145 10 

(Kodur et al. 

2005) 

TNC

2 
305 305 2.18 40 FF 40 0 1500 145 10 

(Kodur et al. 

2005) 

TNC

3 
305 305 2.18 40 PP 40 25 1000 145 10 

(Kodur et al. 

2005) 

THC

4 
305 305 2.18 100 FF 40 0 2000 145 10 

(Kodur et al. 

2005) 

THC

5 
305 305 2.18 100 FF 40 0 2000 145 10 

(Kodur et al. 

2005) 

THC

6 
305 305 2.18 100 FF 40 0 3000 145 10 

(Kodur et al. 

2005) 

THC

7 
305 305 2.18 73 FF 40 0 1300 145 10 
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(Kodur et al. 

2005) 

THC

8 
305 305 2.18 73 FF 40 0 2000 145 10 

(Kodur et al. 

2005) 

THC

9 
305 305 2.18 73 PF 40 25 1200 145 10 

(Kodur et al. 

2005) 

THS

10 
305 305 2.18 73 FF 40 0 1800 145 10 

(Kodur et al. 

2005) 

THS

11 
305 305 2.18 73 FF 40 0 2200 145 10 

(Kodur et al. 

2005) 

THS

12 
305 305 2.18 73 PF 40 25 1500 145 10 

(Kodur et al. 

2005) 

THP

13 
305 305 2.18 69 FF 40 0 1800 145 10 

(Kodur et al. 

2005) 

THP

14 
305 305 2.18 69 FF 40 0 2200 145 10 

(Kodur et al. 

2005) 

THP

15 
305 305 2.18 69 PF 40 25 1500 145 10 

(Shah and Sharma 

2017) 

M3S

50 
300 300 1.78 34 FF 40 0 1170 200 10 

(Shah and Sharma 

2017) 

M3S

75 
300 300 1.78 34 FF 40 0 1170 150 10 

(Shah and Sharma 

2017) 

M3S

100 
300 300 1.78 34 FF 40 0 1170 75 10 

(Shah and Sharma 

2017) 

M3S

150 
300 300 1.78 34 FF 40 0 1170 150 10 

(Shah and Sharma 

2017) 

M3S

T150 
300 300 1.78 34 FF 40 0 1170 100 10 

(Shah and Sharma 

2017) 

M3S

200 
300 300 1.78 34 FF 40 0 1170 50 10 

(Shah and Sharma 

2017) 

M6S

150 
300 300 1.78 63 FF 40 0 1858 150 10 

(Shah and Sharma 

2017) 

M6S

T150 
300 300 1.78 63 FF 40 0 1858 150 10 

(Kodur et al. 

2005) 

HS2-

1 
406 406 2.47 85 FF 40 0 3895 203 10 

(Kodur et al. 

2005) 

HS2-

2 
406 406 2.47 85 FF 40 0 4328 305 10 

(Kodur et al. 

2005) 

HS2-

3 
406 406 2.47 85 FF 40 0 4328 406 10 

(Kodur et al. 

2005) 

HS2-

4 
406 406 2.47 114 FF 40 0 4567 203 10 

(Kodur et al. 

2005) 

HS2-

5 
406 406 2.47 114 FF 40 0 5373 305 10 

(Kodur et al. 

2005) 

HS2-

6 
406 406 2.47 114 FF 40 0 3546 406 10 

(Kodur et al. 

2005) 

HS2-

7 
406 406 2.47 138 PF 40 27 4233 203 10 

(Kodur et al. 

2005) 

HS2-

8 
406 406 2.47 138 PF 40 27 4981 305 10 

(Kodur et al. 

2005) 

HS2-

9 
406 406 2.47 138 PF 40 27 4981 305 10 
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(Kodur et al. 

2005) 

HS2-

10 
406 406 2.47 138 PF 40 27 4981 406 10 

(Buch and Sharma 

2019) 

NSC

0 
300 300 2.28 28 PP 40 0 544 300 8 

(Buch and Sharma 

2019) 

NSC

1 
300 300 2.18 28 PP 40 20 532 300 8 

(Buch and Sharma 

2019) 

NSC

2 
300 300 2.28 32 PP 40 20 579 300 8 

(Buch and Sharma 

2019) 

NSC

3 
300 300 2.28 31 PP 40 40 567 300 8 

(Buch and Sharma 

2019) 

NSC

4 
300 300 2.28 27 PP 40 20 544 150 8 

(Buch and Sharma 

2019) 

NSC

5 
300 300 2.28 31 PP 40 40 567 150 8 

(Buch and Sharma 

2019) 

HSC

0 
300 300 2.28 69 PP 40 0 1008 300 8 

(Buch and Sharma 

2019) 

HSC

1 
300 300 2.18 58 PP 40 20 892 300 8 

(Buch and Sharma 

2019) 

HSC

2 
300 300 2.28 69 PP 40 20 973 300 8 

(Buch and Sharma 

2019) 

HSC

3 
300 300 2.28 67 PP 40 20 996 150 8 

(Buch and Sharma 

2019) 

HSC

4 
300 300 2.28 60 PP 40 40 892 150 8 

(Rodrigues et al. 

2010) 
C1 250 250 3.14 24 PP 30 0 686 187 8 

(Rodrigues et al. 

2010) 
C2 250 250 3.14 27 PP 30 0 686 187 8 

(Rodrigues et al. 

2010) 
C3 250 250 3.14 25 PP 30 0 686 187 8 

(Rodrigues et al. 

2010) 
C4 250 250 3.14 29 PP 30 0 686 187 8 

(Myllymaki and 

Lie 1991) 
C 300 300 0.89 38 PP 30 0 1400 240 6 

(Davey and 

Ashton 1953) 
C27 152 152 2.19 29 FF 25 0 209 152 8 

(Davey and 

Ashton 1953) 
C41 152 152 6.71 28 FF 25 0 346 152 8 

(Davey and 

Ashton 1953) 
C11 254 254 0.79 28 FF 25 0 463 152 8 

(Davey and 

Ashton 1953) 
C13 254 254 0.79 15 FF 25 0 448 152 8 

(Davey and 

Ashton 1953) 
C15 254 254 0.79 17 FF 25 0 508 152 8 

(Davey and 

Ashton 1953) 
C21 254 254 3.97 28 FF 29 0 725 152 8 

(Davey and 

Ashton 1953) 
C23 254 254 0.79 38 FF 25 0 623 152 8 

(Davey and 

Ashton 1953) 
C24 254 254 0.79 36 FF 25 0 657 152 8 
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(Davey and 

Ashton 1953) 
C30 254 254 0.79 39 FF 25 0 465 152 8 

(Davey and 

Ashton 1953) 
C31 254 254 0.79 36 FF 25 0 463 152 8 

(Davey and 

Ashton 1953) 
C32 254 254 0.79 37 FF 25 0 463 152 8 

(Davey and 

Ashton 1953) 
C35 254 254 0.79 16 FF 25 0 465 152 8 

(Davey and 

Ashton 1953) 
C46 254 254 4.91 29 FF 32 0 918 152 9 

(Davey and 

Ashton 1953) 
C20 279 279 1.02 26 FF 38 0 711 114 8 

(Davey and 

Ashton 1953) 
C33 279 279 1.02 33 FF 38 0 586 178 9 

(Davey and 

Ashton 1953) 
C34 279 279 1.02 34 FF 38 0 858 178 9 

(Davey and 

Ashton 1953) 
C36 279 279 1.02 22 FF 38 0 586 178 9 

(Davey and 

Ashton 1953) 
C37 279 279 1.02 26 FF 38 0 586 178 9 

(Davey and 

Ashton 1953) 
C38 279 279 1.02 31 FF 38 0 0 178 9 

(Davey and 

Ashton 1953) 
C39 279 279 1.02 27 FF 38 0 586 178 9 

(Davey and 

Ashton 1953) 
C42 279 279 1.02 29 FF 38 0 711 178 9 

(Davey and 

Ashton 1953) 
C82 279 279 4.07 36 FF 38 0 909 178 9 

(Davey and 

Ashton 1953) 
C86 279 279 4.07 38 FF 38 0 909 191 9 

(Davey and 

Ashton 1953) 
C87 279 279 4.07 36 FF 38 0 911 191 9 

(Davey and 

Ashton 1953) 

E25/

S3 
279 279 4.07 25 FF 38 0 906 191 9 

(Davey and 

Ashton 1953) 
C89 279 279 4.07 29 FF 38 0 608 191 9 

(Davey and 

Ashton 1953) 
C90 279 279 4.07 30 FF 38 0 608 191 9 

(Davey and 

Ashton 1953) 
C88 279 279 4.07 29 FF 38 0 608 191 9 

(Davey and 

Ashton 1953) 
C12 305 305 0.85 18 FF 51 0 779 114 8 

(Davey and 

Ashton 1953) 

E16/

S8 
356 356 0.90 30 FF 38 0 857 229 6 

(Davey and 

Ashton 1953) 
C28 406 406 1.88 27 FF 25 0 1230 152 9 

(Davey and 

Ashton 1953) 
C44 406 406 4.65 23 FF 35 0 2092 152 8 

(Davey and 

Ashton 1953) 
C47 406 406 4.65 34 FF 35 0 2361 152 8 
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(Davey and 

Ashton 1953) 
C45 483 483 1.33 27 FF 25 0 747 152 9 

(Davey and 

Ashton 1953) 
C48 508 508 2.40 30 FF 44 0 3257 152 9 

(Davey and 

Ashton 1953) 
C29 514 514 0.97 29 FF 44 0 1982 127 9 

(Davey and 

Ashton 1953) 
C49 305 305 1.09 24 FF 13 0 784 38 8 

(Davey and 

Ashton 1953) 
C53 305 305 1.09 30 FF 13 0 876 38 8 

(Davey and 

Ashton 1953) 
C50 356 356 0.80 34 FF 13 0 896 51 8 

(Davey and 

Ashton 1953) 
C51 406 406 0.96 38 FF 13 0 1235 44 8 

(Davey and 

Ashton 1953) 
C54 406 406 0.96 44 FF 13 0 1394 44 8 

(Davey and 

Ashton 1953) 
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Table 2 Outcome of DS+ML analysis with feature engineering 711 

 Number of identified 

critical parameters  

Identified critical 

parameters 

Feature(s) 

generated 

Naive Bayes 4 e, s, d, fc e–s 

Generalized Linear Model 4 b, fc, s, d - 

Logistic Regression 3 d, fc, c - 

Fast Large Margin 5 s, fc. e, d, h, b e–d, abs(fc) 

Deep Learning 5 b, d, fc, k, s - 

Decision Tree 3 d, fc, h d×fc×h 

Random Forest 5 d, r, fc, b fc/r, b×r 

Gradient Boosted Trees 5 fc, c, d, s, b - 

Support Vector Machine 2 fc, d exp(d)- fc 

Overall reoccurring 
d fc b s c e h k r P 
9 9 5 5 2 2 2 1 1 0 
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