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Enabling Cognitive and Autonomous Infrastructure in Extreme Events 

through Computer Vision 
 

ABSTRACT 

As advent by the continuous inertia towards integrating artificial intelligence into daily operations, 

it is a matter of time before artificial intelligence reforms the field of structural engineering. From 

this point of view, this paper explores how computer vision and deep learning can be applied, in 

combination with advanced finite element analysis, to realize cognitive (self-diagnosing) and 

autonomous infrastructure. The outcome of this study demonstrates that computer vision not only 

can enable a structure to understand that it is undergoing an extreme event but can also allow it to 

trace its own performance and to independently respond to mitigate prominent failure/collapse. 

Findings of this work infer that computer vision can serve as an intelligent, and scalable agent to 

accurately trace structural response, identify different damage mechanisms and propose suitable 

repair strategies whether during or in the aftermath of a traumatic event (i.e. fire, earthquake). 

Finally, a series of challenges and future research directions are outlined towards the end of this 

paper. 

 

Keywords: autonomous and cognitive infrastructure; computer vision; deep learning; fire; 

earthquake. 

 

INTRODUCTION 

Civil infrastructure are primarily designed to serve occupants and commuters over an extended 

period of time that often exceeds 25-50 years [1]. As a result of this prolonged service life, and 

given the tendency of structures to age, civil constructions become vulnerable to the increasing 

frequency and intensity of natural and manmade extreme events (i.e. earthquake, terrorist attacks 

etc.). As such, recent research efforts have been directed toward developing practical strategies to 

enhance the resilience of critical infrastructure [2]. Most of these strategies rely on classical 

solutions in which the primary objectives are to: 1) enhance properties of construction materials, 

2) improve the design of new load-bearing structural systems or, 3) upgrade or strengthen existing 

structural components to withstand intense loading conditions [3–5].  

 

A revolutionary look into the near future shows that it is possible to realize resilient infrastructure 

that can adapt to a wide variety of loading conditions. This can be achieved by leveraging recent 

advancements in design and computing [6–8]. In such a view, a new generation of infrastructure 

with highly adaptive load-bearing systems can allow a structure to autonomously reconfigure its 

layout in order to adapt and respond to extreme loading conditions. This concept allows a structure 

not only to comprehend that it is undergoing a severe loading event (as well as the magnitude of 

such event), but also enables it to trace its own performance during such event and to independently 

respond to mitigate prominent failure/collapse. In order to achieve such high level of structural 

awareness, appropriate frameworks utilizing different fields of computer science, sensing and 

structural engineering need to properly converge.  

 

Such a framework could be realized through AI which has become the focal point of research in 

the past two decades. While the application of AI into the field of structural engineering is fairly 
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lagging [9–15], the application of contemporary AI-based algorithms, i.e. Deep Learning (DL), 

Pattern Recognition (PR), Genetic Programming (GP) etc., continues to rise [16–18].  

In lieu of the above algorithms, CV is a high profile technique that can be broadly defined as the 

operation of how computing devices are capable of developing a high level of perception from 

abstracts, images or videos as to automate tasks often carried out by humans [19]. In other words, 

CV is the ability of a computing workstation to comprehend, identify, detect, or classify visuals 

with minimum to no human intervention. From this paper’s point of view, CV is applied through 

specialized forms of artificial neural networks (ANNs). Some of the commonly used ANNs 

include; Region-based Convolutional Neural Network (R-CNN), Region-based Fully 

Convolutional Net (R-FCN), Single-Shot Detector (SSD) etc. While these derivatives share some 

features in common, they still differ on a number of fronts; primarily due to the nature of their 

development and intended use [20–22]. It should be noted that a more in-depth review on other 

architectures such as You Only Look Once (YOLO) and Visual Geometry Group (VGG) can be 

found elsewhere [23,24]. 

 

A deeper look into the published literature shows that a common feature between current efforts 

can be summed by primarily applying AI and CV to investigate: 1) traditional phenomena where 

a good amount of knowledge (experimentations) exists [25], and 2) phenomena occurring at 

ambient conditions (i.e. thermal comfort etc.) [26]. This observation was also reported in notable 

reviews such as those carried out by Sohn [27], Simoen et al. [28] and Xie et al. [29]. This infers 

that the application of AI towards extreme loading conditions continues to be limited mostly due 

to the restricted availability of raw data points that can be used to train CV-based models; given 

the lack of testing facilities and instrumentations that can endure harsh loading conditions (i.e. fire, 

earthquake etc.).  

 

With the hope of bridging this knowledge gap, this work presents a novel framework designed to 

comprehend structural behavior during (or in the aftermath of) an extreme event. Rather than 

applying traditional assessment techniques such as manned or unmanned visual inspection [30] 

etc., a CV-powered assessment tool is developed using DL to examine the performance of 

structural components (i.e. composite steel girders and fiber reinforced polymer (FRP) 

strengthened reinforced concrete beams) under fire and earthquake loading. With the aim of 

providing a sound and consistent collection of raw data points (i.e. imagery), actual full scale fire 

and seismic tests are first utilized to develop a highly complex and three-dimensional finite 

element (FE) model capable of accurately tracing the complete response of fire-exposed and 

earthquake-subjected structural components. These models are then used to generate a realistic 

imagery database of damage response similar to that observed in full scale tests. The FE-based 

imagery is then used to train, validate and also test the accuracy of a developed CV tool. The same 

imagery is also used to train the tool to arrive at suitable repair strategies as to salvage event-

damaged structural members. The presented results show that the developed methodology can 

facilitate safe inspections and timely repairs. Finally, a discussion on the scalability of the proposed 

concepts to full-sized structures, as well as associated limitations and current challenges is outlined 

towards the end of this paper. 
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A FRAMEWORK TOWARDS ASSESSING STRUCTURAL RESPONSE UNDER 

EXTREME LOADING CONDITIONS 

Proposed framework  

The proposed framework comprises of seven steps as outlined in Fig. 1. The first step starts by 

collecting imagery on damaged structural members as to compile a database. This database is to 

contain images (or videos) on various structural components (i.e. beams, columns, walls etc.) of 

different configurations (e.g. construction materials, restraint conditions, loading levels, 

functionality etc.). Such rich database can then be used to train and develop a CV-based model as 

part of the second step. In this step the database is split into three sets for training, validating, and 

testing purposes. The training of the CV model often follows an iterative procedure until a 

satisfactory performance is achieved [19]. Both of these steps are part of the development stage in 

the proposed framework.  

 
 

 

 

Fig. 1 Framework for structural assessment using CV (please note that “Development stage”, 

“Deployment stage” and “Application stage” are covered in the second, third and four sections, 

respectively.  

 

Then, the properly trained CV model is deployed in the deployment stage to examine a damaged 

member (say a concrete beam) and this takes place in the third step. In this step, the CV model can 

be used to: 1) passively assess the state of a structural member after being damaged (i.e. once a 

fire is extinguished or post a seismic incident) through imagery collected by means of traditional 

inspection tools or those mounted on unmanned vehicles such as drones etc., or 2) dynamically 

trace structural performance through embedded visual sensors during an event i.e. throughout a 

fire incident (and both of these scenarios will be highlighted in later section). The result of the CV 
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analysis obtained from the third step is input into step four which couples the identified level 

damage to a DL-based decision tool. This tool further analyzes the outcome of the third step and 

compares it against prior (or similar) documented incidents and applied repair solutions at the time 

of previous incidents. A solution (or a series of solutions) is then proposed to retrofit such damage 

in the fifth step. 

 

The application stage is the final stage in the proposed framework and comprises of two additional 

steps. In the sixth step an optimal solution strategy is selected primarily based on the CV tool 

coupled with knowledge/experience of practicing engineer(s). Incorporating a human-based 

knowledge system is important in the case where the developed CV-based decision tool is not 

supplemented with a library of properly documented structural failures. This added knowledge 

system can support the CV-based tool to provide and verify the applicability of the proposed repair 

solutions. The seventh and final step is to apply the selected repair strategy in order to repair the 

damaged structure.  

 

When fully functional, the proposed tool has the potential to be applied and integrated into an 

autonomous and cognitive infrastructure through sensors and embedded cameras as described in a 

previous studies [7,31]. The main use of this tool is to identify the point in time when main 

structural members become vulnerable to failure (collapse) and hence activates autonomous 

structural components (ASCs); which are secondary and redundant load-bearing systems to 

facilitate redistributing portions of the applied loading toward non-damaged components [7]. An 

illustration of an ASC is shown in Fig. 2 where the strength of the beam (in red) is degrading due 

to the effect of heat arising from a fire incident. With prolong exposure to elevated temperatures, 

the beam further deteriorates. This jeopardizes the structural integrity of the structure as excessive 

deflection can trigger failure of the ceiling and partial/complete collapse of the structure. Once the 

cognitive and autonomous infrastructure identifies that such failure is eminent, the structure 

releases an ASC that is pre-integrated into compartment boundaries to: 1) limit deflection of the 

fire-damaged beam, and 2) redistribute loadings applied to the beams to the slab to minimize 

possibility of overstressing the beam and probability of collapse (to preserve the integrity of the 

compartment).  
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Fig. 2 Concept for an ASC 

A note on the proposed framework  

The application of CV towards understanding failure, or at minimum, damage of structural 

components/systems requires input and analysis of a large number of images or videos of damaged 

or failed structures (see samples shown in Fig. 3). It should be stressed that: 1) very limited 

instrumentations and laboratory equipment can withstand harsh loading conditions (e.g. fire), 2) 

the notion of a publicly available and properly compiled databases for such images/videos is 

technically foreign to this field (i.e. structural engineering), 3) the outcome of building/collapse 

investigations is often kept away from the public eye (i.e. for liability, insurance, legal etc. 

purposes), and 4) even when researchers carry out experiments, the accepted norm is to only share 

a sample of images of such tests in reports and research articles.  

 

  

Web buckling 

Web buckling 

Stiffener buckling 

Stiffener buckling 
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Fig. 3 Samples of failure due to temperature-induced instability (i.e. web buckling) in 

fire-exposed composite steel girders [32] 

 

Thus, the availability of i) very few images, ii) taken from 1-2 vantage points, and iii) of 

low/medium quality, hinder their use and applicability into training and development of robust CV 

models. In order to overcome some of the above limitations, this study explores utilizing images 

of damaged structures taken from highly complex 3D nonlinear FE simulations that are based on 

actual full-size experimental tests. It should be noted that the above proposed framework is still 

expected to properly function when/if supplemented with actual imagery from failed structures. 

The following section better highlights the development of FE models that can be used for this 

purpose in more details.  

 

DEVELOPMENT OF FINITE ELEMENT MODELS 

The three-dimensional (3D) FE models used to generate imagery to be input into the CV platform 

were developed in the simulation environment; ANSYS. These models were built to mimic 

realistic behavior of structures and hence account for geometric imperfections and material 

nonlinearities. The same models also give due consideration to material-specific characteristics 

(i.e. damage softening and temperature-dependent properties) as well as failure limit states (i.e. 

flexure, shear, instability, deflection, debonding etc.). For undertaking FE analysis, two beams are 

examined. The first, Beam 1, is a two-span (continuous) composite steel beam exposed to fire and 

gravity loading and the second, Beam 2, is a cantilever reinforced concrete (RC) beam 

strengthened with carbon FRP (CRFP) sheets and subjected to cyclic loading simulating a seismic 

event (see Fig. 4) [33]. Due to the different loading conditions subjected to these two beams, each 

beam is discretized using a particular set of element types and is modeled through phenomena-

oriented simulation techniques as discussed below.  

 

 
(a) Cross-section view  

 

 

Concrete slab (SOLID70/65) 

Steel beam (SOLID70/185) 

Steel stiffener (SOLID70/185) 

Composite action interface 

(CONTA174 and TARGE170) 
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(b) Elevation view of Beam 1 (the distortion in steel beam is amplified to show geometric 

imperfections) 

 
(c) Cross section view  

  
(d) View of Beam 2 

Fig. 4 Views of discretized composite steel beam and FRP-strengthened RC beam used in FE 

simulations  

Gravity loading 

Fire loading 

Concrete T-beam (SOLID65) 

CFRP sheets (SHELL181), with INTER205 at 

the interface of CFRP and concrete to simulate 

bonding agent 

Cantilever concrete T-beam 

Column – for fixed support  

Seismic loading 

Seismic (cyclic) loading history 

S
h

ea
r 

fo
rc

e 
(k

N
) 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” 

Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

8 

 

 

Beam 1 – subjected to fire and gravity loadings  

Beam 1 comprises of a hot-rolled W24×62 steel shape with flange width and thickness of 179 and 

15 mm, as well as web depth and thickness of 610 and 11 mm, respectively (thus resulting in web 

slenderness of 55.1). This beam is fabricated using high strength low-alloy (HSLA) A572 steel of 

Grade 345 MPa. The steel beam is intended to be compositely attached to a reinforced concrete 

(RC) slab. To achieve 100% composite action, two rows of 19 mm diameter shear studs were 

welded to the top flange of the steel beam. The slab is cast with traditional normal weight concrete 

of a compressive strength reaching 45 MPa. This slab is reinforced with two layers of equally 

spaced steel reinforcement of No. 4 rebars. Both, the beam and slab, span 4185 mm. 

 

Since Beam 1 is exposed to fire, this beam was discretized using distinct thermal and structural 

elements. For a start, the steel beam is meshed using two different types of thermal elements; 

SOLID70 and SURF152, as to simulate heat transfer generated from fire to the beam. For the 

structural analysis, the steel beam is discretized with SOLID185 while the concrete slab is meshed 

with SOLID65 to allow capturing cracking and crushing of concrete. The interface between the 

steel beam and RC slab is discretized using nonlinear contact elements (CONTA174 and 

TARGE170) to account for the bond-slip action that can develop under fire conditions. Proper 

restraint conditions are installed through restricting the movement and rotation of nodes at support 

conditions.  

 

To accurately capture the fire response of this composite steel beam, temperature-dependent 

thermal and mechanical properties of structural steel, concrete, and shear studs are input into the 

developed FE model. These properties include density, thermal conductivity, specific heat, 

strength, modulus and stress-strain relations. These properties are assumed to be taken as 

recommended by the Eurocodes [34,35]. Other factors that govern heat transfer phenomenon such 

as convection and radiation are also accounted for as per Eurocodes provisions [34,35]. 

 

To properly simulate the thermo-structural response of this composite steel beam, two steps of 

simulations are required to be carried out. In the FE simulations, it is common to carry out a 

thermal-then-mechanical analysis. This practice has been well established by several researchers 

[36,37]. It helps to note that the amount of deflection and stresses arising from pre-loading the 

beam can be considered small (which justify the use of a thermal-then-mechanical simulation 

analysis). Thus, in the first step, heat transfer between fire source and composite beam is analyzed 

and the outcome of this analysis (i.e. propagation of temperature across the composite beam) is 

input to the second step of analysis. In the second step, gravity loading is applied (simultaneously 

to fire loading obtained from the first step) as to properly evaluate structural response of the beam. 

Failure of this beam is assumed to occur once sectional capacity (i.e. flexure/shear) falls below 

level of bending moment or shear force arising from applied loading or once beam’s deflection 

exceeds the limit of (L2/400d) or rate of deflection reaches (L2/9000d); where L and d are the span 

and depth of the beam, respectively [38]. It is worth noting that failure in the full-scale fire test 

carried out on this beam occurred through development of high levels of temperature-induced web 

instability (i.e. buckling) at the interior support within the heating phase [39].  
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Beam 2 – subjected to seismic loading  

Beam 2 is also modeled using ANSYS. This beam is supported from one end by a RC column, 

while being cyclically loaded at the free end (see Fig. 4d). This cantilever beam has a clear span 

of 1675 mm, with a depth of 360 mm, web width of 120 mm, flange thickness of 75 mm and flange 

width of 360 mm. The beam is reinforced with top and bottom steel reinforcement, comprising of 

three 20 mm diameter rebars. This beam is strengthened with 50 mm wide Sikawrap 160c CFRP 

sheets adhesively bonded with Sikadur-330 epoxy as this beam is designed to be deficient in shear 

(i.e. was not reinforced with stirrups) [33]. 

 

The different components of this RC beam are discretized such that SOLID65, LINK8, 

SHELL181, and INTER205 elements are used to mesh concrete, steel rebars, and CFRP sheets, 

respectively. As this beam is only subjected to cyclic loading at ambient conditions, only 

mechanical (i.e. strength, modulus and stress-strain relations) properties are required to be input. 

Thus, the compressive behavior of concrete is modeled through Hongnestad et al. [40] model, 

while its tensile behavior was modeled through a trilinear model based on the work William and 

Warnke [41]. The CFRP sheets are assumed to have orthotropic properties with elastic properties 

while epoxy has brittle and isotropic elastic properties. The epoxy is applied between the CFRP 

sheet and concrete faces and is simulated through a cohesive zone model developed by Xu and 

Needleman [42]. The beam was fully retrained on one edge to represent a cantilever beam by fully 

constraining the nodes’ movement and rotations. Similar to Beam 1, the second beam is also 

assumed to fail once its sectional capacity is exceeded and can also fail once debonding or fracture 

of the CFRP sheets occur.  

 

Validation of FE Models 

In order to validate the aforementioned FE models, numerical predictions were compared against 

observations from full-scale tests carried out on Beam 1 and 2. Figure 5 shows a comparison 

between experimentally measured and numerically predicted results for Beams 1 and 2; wherein 

thermal (i.e. temperature rise across the beam) and deflection results are plotted for Beam 1, and 

hysteresis history is plotted for Beam 2. Overall, it can be inferred from this figure that there is a 

close agreement between experimentally measured and predicted outcome of the FE simulations. 

A general rule of thumb for a well-developed FE model is to have a Newton-Raphson based 

convergence limit of 5% as to achieve an accuracy of 5-10% of that observed in the actual tests. It 

should be noted that a detailed discussion on the carried out experimental tests, together with the 

development and validity of the FE models, is presented elsewhere [33,39] for brevity as the main 

focus of this study is to use FE models to generate images that can develop a CV tool capable of 

evaluating structural response under extreme loading conditions. 
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(a) Thermal response in Beam (Note: the cooling phase is shown for completion and 

refers to the end of fire test (and hence cooling of furnace). This phase does not affect 

the findings of this work since failure occurs during the heating phase (as observed in 

the real fire test).) 

 
(b) Deflection response in Beam 1 
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(c) Hysteresis history in Beam 2 

Fig. 5 Validation of the developed FE models 

 

STRUCTURAL ASSESSMENT THROUGH CV  

In order to carry out a CV analysis on the above described beams, a CV model was developed 

through the commercially available AI-based image recognition platform; Deepomatic. 

Deepomatic can be used to build custom-designed CV models to extract meaningful information 

(referred to as concepts) from abstracts, images and videos. In a CV-based classification analysis, 

a CV model aims to classify a particular object through extracting visual cues and then determining 

which category best fit this object. A successful CV model will be able to detect pre-identified 

features in a given visual (e.g. buckling of web in steel beams or flexural and shear cracks in a 

concrete beam).  

 

A sample of such categorization images pertaining to Beam 1 and Beam 2 are shown in Fig. 6. 

This figure traces the development of failure mechanisms in these beams during fire and 

earthquake loading scenarios. The same figure also shows schematics and definitions of concepts 

used to identify failure mode/mechanisms in Beam 1 and Beam 2. For example, the concepts used 

in the case of Beam 1 are associated with development of web buckling failure mechanism at the 

interior support of this beam. As such, Fig. 6a shows how this failure mechanism develops over 

fire exposure time (i.e. no sign of buckling at the beginning of fire, then minor buckling starts to 

occur at round 25 minutes of fire exposure due to heat and loading effects, and a much larger area 

of the web undergoes substantial buckling at around 60 minutes etc.). Similarly, Fig. 6b 

distinguishes between intensity and different types of cracks in Beam 2 (i.e. tensile vs. compressive 

vs. shear cracks). Based on the results of the CV analysis, an assessment can be made to 

recommend possible solutions and repair strategies as to retrofit or salvage damaged structural 

members. 
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(i) Ambient conditions (ii) After 25 minutes of fire exposure 

 
(iii) After 60 minutes of fire exposure (and comparison against previous full-scale fire test) 

(a) Propagation of failure in fire-exposed steel composite beam (Beam 1) through temperature-induced web buckling 
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(i) Initiation of flexural damage   (ii) Development of shear damage 

 
(iii) Excessive cracking (failure) 

(b) Crack development history in Beam 2 under seismic loading  

Fig. 6 Definition of concepts and history of failure/damage mechanisms in Beams 1 and 2 
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Outcome of CV analysis on Beam 1  

In the case of Beam 1, images tracing development of temperature-induced instability from the 

start of fire until failure, in 30 seconds increments, are input into Deepomatic; and the complete 

list of these images is shown in Appendix 1. Out of 141 images, 107 images were used to train the 

CV model while 31 images were used to validate this model. This split of 77.5%/22.5% was 

selected to be in close proximity of recommendation of notable works. The training process 

included identifying three concepts: 1) no sign of buckling, 2) minor buckling, and 3) major 

buckling. In this process, the CV model is trained by inputting images that were labelled with one 

(or more) of the three aforementioned concepts. Then, the CV model is trained by selecting one of 

the architectures adopted by Deepomatic. In the case of Beam 1, the architecture with the best 

performance was Faster RCNN - ResNet-101 v1. A sample of the outcome of this analysis that is 

taken on images labeled for testing (i.e. not used in training or validation of the model) is shown 

in Fig. 7 which depict the state of the beam after 13 and 65 minutes of fire exposure. In Fig. 7a, 

the CV model was able of accurately identifying the magnitude of temperature-induced damage 

occurring at 13 minutes of fire exposure as minor buckling with 86% confidence and also detected 

that end panels did not undergo any buckling with a much higher confidence level exceeding 95%.  

 
(a) At 13 minutes 

Minor buckling (86%)  

No sign of buckling (97.5%) 

No sign of buckling (95.5%) 
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(b) At 65 minutes 

Fig. 7 Predictions from CV model in case of Beam 1 

 

Figure 7b shows that the CV model managed to also detect that exterior panels of this beam did 

not undergo any buckling after 65 minutes of exposure to fire and this agrees well with 

observations from a full-scale fire test carried out earlier [32]. In addition, the CV model identified 

the magnitude of buckling at the mid-span region as major buckling with high confidence 77.6% 

as oppose to being minor buckling (32.7%) at the same region and point in time. It should be noted 

that major buckling was observed to occur at a similar point in time as documented in the fire test 

[32]. 

 

Outcome of CV analysis on Beam 2 

An autonomous and cognitive infrastructure has the ability to carry out full diagnosis post an 

extreme event as to estimate magnitude of damage, as well as propose suitable strategies for 

retrofitting, safe inspection and timely repairs. As discussed earlier, Beam 2* is subjected to a series 

of cyclic loadings representing a seismic event. Similar to the procedure carried out in evaluating 

Beam 1, images obtained from the FE simulations relating to development of flexural and shear 

cracks in this beam during the loading history are input into the CV model. For simplicity and to 

show the potential of the developed CV model, only few images are used to train, validate and test 

the model. This decision was made to represent a practical case study in which a limited number 

of images are available for analysis. It should be noted that a sample set of images used herein 

(comprising of 8 images for training and 2 images for validation) are plotted in Fig. 8. 

 
* For the sake of discussion carried out herein, Beam 2 is examined first without accounting for the contribution of 

CFRP attachments (i.e. transforming this beam into a traditional RC beam). Beam 2 is then re-examined (with CFRP 

attachments) towards the end of this section. 
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Fig. 8 Imagery used in training the developed CV model in case of Beam 2 
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Once the CV model was properly trained to identify compressive, tensile, and shear cracks as well 

as regions free of cracks; using Faster RCNN - ResNet-50 v1 architecture, the developed CV model 

was able to identify the type of developed cracks in the images used for validation and shown in 

Fig. 9. A cross examination of this figure shows that predictions from the CV model seems to 

better capture the development of cracks under high magnitude of loading (at 30 kN) more than 

that under lower magnitude of loading (at 10 kN). Moreover, predictions from the CV model seem 

to overestimate the size of compressive cracks (e.g. falsely classifying the region free-of-cracks 

located at the bottom portion of the beam) when the beam was subjected to a loading equivalent 

to 10 kN. Both of these observations can be simply attributed to the limited number of images used 

in training the developed CV model (8 vs. 107 images as used in Beam 1). In the case where a 

higher number of images is to be used, similar to that shown in Beam 1, then the CV model is 

expected to achieve higher recognition performance in the case of Beam 2.  

 
(a) At 10 kN 

 
(b) At 30 kN 

 

Fig. 9 Predictions from CV model in case of Beam 2 

 

The result of the above examination can still be used to: 1) quantify the magnitude of damage, and 

2) propose suitable strategies for retrofitting. Through close examination of Fig. 9b, an effective 

strategy that can be used to repair the heavily cracked or damaged beam is through utilizing carbon 

fiber-reinforced polymers (CFRP) [43–46]. Thus, this beam was strengthened with 0.12 mm thick 

and 50 mm wide CFRP sheets that are spaced at 135 mm center-to-center across the longitudinal 

side of the beam. In order to examine the viability of this solution, the structural performance of 

this strengthened beam is evaluated under the same loading history applied to the beam without 

any FRP attachments using the FE model developed earlier (see Fig. 4d). The outcome of this 

numerical analysis is plotted in Fig. 10 to compare the structural performance in terms of cracking 
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Free of cracks  

Bounding box for compressive cracks 
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vulnerability of the unstrengthened RC beam to that of the FRP-strengthened beam. Figure 10 

clearly shows how adopting FRP strengthening as a repair strategy seems to be an effective 

solution as apparent by the lesser magnitude and intensity of cracks developed at 7 and 40 kN.  
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(a) At 7 kN 

 
(b) At 40 kN 

Fig. 10 Comparison between crack development in RC beam (left) and FRP-strengthened RC beam (right) 
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It should be noted that a future study, that is currently underway, is designed to utilize CV to better 

visualize the magnitude and intensity of cracks in beams similar to Beam 2. This study is exploring 

a few repair solutions including: FRP strengthening composites, fiber reinforced cementitious 

matrix (FRCM), mortar injections, metal jacketing etc. For example, once the CV model identifies 

minor cracking such as that shown in Fig. 10a, then this model would recommend the use of mortar 

injections over installing metal jacketing or FRP attachments across the whole beam; given 

strength and serviceability reequipments, as well as expected economic costs etc.  

 

INSIGHTS INTO CURRENT CHALLENGES AND FUTURE RESEARCH DIRECTIONS  

The discussion presented throughout this work infers that in order to integrate CV to enable 

structural awareness and self-diagnosis as a step towards realizing autonomous structures, then a 

coherent framework is needed. This framework is to be easy-to-deploy, and most of all scalable, 

and reliable. As such, there is a need to first identify the required combination of soft/hardware, 

type and nature of AI/CV algorithms/models, sensors, communication and processing 

architectures etc. A key component to remember is that the amount of data that is expected to be 

generated before/during/post a disaster breakout, given the scale of an infrastructure, can be quite 

substantial (unlike those presented herein). Hence, appropriate means are required for proper data 

segmentation, pre-processing and post-processing of imagery as to arrive at meaningful 

representation of collected data that can be further processed with ease and in real-time basis [47].  

 

Other factors that warrants further research and need to be addressed include: type, sensitivity, 

power supply, power consumption, life-span of sensors (i.e. image collectors such as cameras etc.), 

sensor network, required bandwidth, data sorting and collection etc. Future advancements in 

analytics and computer vision will be able to handle the above challenges with ease (with the rise 

of faster processors and image capturing technologies). Until then, this should not deter us from 

pursuing this research and planting seeds for an approach that can tackle such a problem. A key 

item to consider is the cost associated with installing sensors and processing of data etc. In a way, 

there is a need to standardize a proper installation procedure that ensures maximizes “meaningful” 

data collection. Without attaining an affordable collective system, the merit of the proposed 

analysis remains limited. Realizing cost effective solutions to the above identified challenges are 

essential to the success of cognitive and autonomous structures.  

 

While this work utilized images obtained from FE simulations, primarily due to challenges in 

obtaining imagery from full-sized experiments, the presented framework can also be applied using 

representative images taken from actual tests. Such images would perhaps not be of “crystal clear” 

quality and are most likely to have distinct features than those obtained from FE numerical 

simulations especially with regards to depth, uniformity, neatness, roughness, color index etc. As 

a result of these unique features, CV architectures are likely to be adjusted to properly address 

such features, as well as to improve their computational competence. As discussed earlier, the 

appendix contains a collection of images obtained from the developed FE simulations on Beam 1. 

This collection only contains 141 images. It should be noted that all of these images are taken from 

one angle of view and for an induvial (i.e. isolated) structural member. While this might limit the 

practicality of a developed CV model, this still provides a good starting point for training CV 
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models†. Future works are asked to focus on much more complex structural systems/members such 

as frames, joints, connections etc. In addition, researchers are invited to develop means to carry 

our tests, increase the size of imagery by augmentation or additional simulations.  

 

It should be noted that while this work emphasizes the structural awareness of critical 

infrastructure, still an autonomous structure is expected to get feedback from other (non-structural) 

components such as: human factors i.e. occupants/commuters/first responders, as well as incident 

duration and magnitude etc. As such, an autonomous structure may alter its internal layout once 

the outcome of the complex processing of inputs collected from structural, human and incident 

components converge. Thus, upcoming studies are invited to cover various features of human 

behavior and disaster development and how these aspects can influence the autonomy and 

cognitivenss of an infrastructure [48]. Future structural systems, when supplemented with such 

abilities, are expected to have improved redundancy and resilience.  

 

It goes without saying that the successful deployment of the proposed framework into practical 

scenarios requires the ability of such a framework to survive harsh loading conditions other than 

those discussed herein (i.e. tornados, tsunamis etc.) as well as to maintain reliability and accuracy 

during and post an extreme (or a series of events) [49]. A system of this magnitude, especially if 

to be scaled over a critical infrastructure i.e. super-tall high-rise building etc., is expected to be 

inherently intricate and to be designed with high redundancy. In this view, it can be seen that such 

a framework can only be realized through a fruitful collaboration between interdisciplinary 

researchers. For example, while computer scientists may take the lead on developing novel AI/CV 

algorithms with high prediction and processing capabilities, structural engineers on the other hand 

are expected to refine (or help improve) the state of these models to best fit the needs of civil 

construction. On a similar notion, both mechanical/robotics and structural engineers can 

collaborate on designing ASCs and so forth [50]. It is worth noting that issues with regard to 

standardization, privacy, security, and policy making (among others) are also expected to arise 

with future advancement, whether as a main concern or as a residue of other matters. Research and 

latest developments on such factors, while are not covered herein, can still be found elsewhere 

[51–53].  

 

CONCLUSIONS 

The outcome of this work allows examining the performance of structures, whether during or in 

the aftermath of a traumatic event, in real-time. The outcome of this work infers that CV can 

supplement current efforts aimed at realizing autonomous and cognitive (self-diagnosing) 

structures and facilitate safe inspections and immediate repairs. The following conclusions could 

also be drawn from the results of this investigation: 

• Modern technologies such as CV are crucial to realizing autonomous and cognitive 

infrastructure.   

 
† For instance, Deepomatic suggests the use of large volumes of imagery (i.e. exceeding 1000+ images) in order to 

achieve high confidence CV models.  
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• Current CV platforms are capable of detecting damage arising from extreme loading events 

such as fire and earthquake with high confidence exceeding 77%. Future CV models are 

expected to detect other loading events such as tornados, blast, impact etc. 

• Future works are encouraged to develop platforms that link CV, occupant behavior 

structural engineering, inspection principles as well as repair strategies into one framework 

to enable synergy and effective utilization of the proposed concepts. These works are to 

explore various aspects such as software implementation, structural tolerance, 

connectivity, scalability etc.   
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Appendix: The following images can be used to benchmark structural and construction engineering-based CV software (for a composite steel beam loaded in shear and subjected to standard fire conditions). 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

27 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

28 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

29 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

30 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

31 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

32 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

33 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

34 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

35 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

36 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

37 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

38 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

39 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

40 

 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s41062-020-00351-6 

 

Please cite this paper as:  

Naser M.Z. (2019). “Enabling cognitive and autonomous infrastructure in extreme events through computer vision.” Innovative Infrastructure Solutions. https://doi.org/10.1007/s41062-020-00351-6.  

 

41 

 

 

Fig. A1. Image collected to be used in benchmarking VC model for tracing temperature-induced instability (Time is displayed in seconds) – minor buckling occurs between 15-35 min, major buckling occurs between 35-65 min, and 

failure through buckling occurs between 65-70 min. 

https://doi.org/10.1007/s41062-020-00351-6
https://doi.org/10.1007/s41062-020-00351-6

