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Abstract 15 

Machine learning (ML) is the field of training machines to achieve a high level of cognition and 16 

perform human-like analysis. Since ML is a data-driven approach, it seemingly fits into our daily 17 

lives and operations and complex and interdisciplinary fields. With the rise of commercial, open-18 

source, and user-catered ML tools, a key question often arises whenever ML is applied to explore 19 

a phenomenon or a scenario: what constitutes a good ML model? Keeping in mind that a proper 20 

answer to this question depends on various factors, this work presumes that a good ML model 21 

optimally performs and best describes the phenomenon on hand. From this perspective, identifying 22 

proper assessment metrics to evaluate the performance of ML models is not only necessary but is 23 

also warranted. As such, this paper examines 78 of the most commonly-used performance fitness 24 

and error metrics for regression and classification algorithms, with emphasis on engineering 25 

applications.  26 

 27 

Keywords: Error metrics; Machine learning; Regression; Classification. 28 

 29 

1. Introduction 30 

Learning is the process of seeking knowledge [1]. We, as humans, can learn from our daily 31 

interactions and experiences because we have the ability to communicate, reason, and understand. 32 

With the rapid technological advancement in computer sciences, computational intelligence has 33 

led to the development of modern cognitive and evaluation tools [2, 3]. One such tool is machine 34 

learning (ML) which is often described as a set of methods that, when applied, can allow machines 35 

to learn/understand meaningful patterns from data repositories; while maintaining minimal human 36 

interaction [4]. More specifically, a “computer program is said to learn from experience E with 37 

respect to some class of tasks T and performance measure P, if its performance at tasks in T, as 38 

measured by P, improves with experience E” [5]. In other words, ML trains machines to 39 

understand real-world applications, use this knowledge to carry out pre-identified tasks with the 40 

goal of optimizing and improving the machines’ performance with time and new knowledge. A 41 
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closer look at the definition of ML infers that computers do not learn by reasoning but rather by 42 

algorithms.  43 

 44 

From the perspective of this work, traditional statistical regression techniques are often used to 45 

carry out behavioral modeling wherein such techniques may suffer from large uncertainties, the 46 

need for the idealization of complex processes, approximation, and averaging widely varying 47 

prototype conditions. Furthermore, statistical analysis often assumes linear, or in some cases 48 

nonlinear, relationships between the output and the predictor variables, and these assumptions do 49 

not always hold true – especially in the context of engineering/real data. On the other hand, ML 50 

methods adaptively learn from experiences and extract various discriminators. One of the major 51 

advantages of ML approaches over the traditional statistical techniques is their ability to derive a 52 

relationship(s) between inputs and outputs without assuming prior forms or existing relationships. 53 

In other words, ML approaches are not confined to one particular space that requires the 54 

availability of physical representation but rather goes beyond that to explore hidden relations in 55 

data patterns [6–11]. 56 

 57 

While ML was initially developed for computer sciences, it is now an integral part of various fields 58 

including, energy/mechanical engineering [6–9], social sciences [10, 11], space applications [12, 59 

13], among others [14–19]. Due to the availability of high-computationally powered machines and 60 

ease-of-access to data (thanks in part to the rise of Internet-of-Things and data-driven-61 

applications), the utilization of ML into civil engineering, in general, and materials science, 62 

engineering in particular, has been duly noted in recent years [20–25].  63 

 64 

An integral part of the wide spread of integrating ML into new research areas is due to the 65 

availability of user-friendly and easy-to-use software packages that simplifies the process of ML 66 

by utilizing pre-defined algorithms and training/validation procedure [26–30]. The availability of 67 

such tools, while facilitating ML analysis and providing new opportunities for researchers often 68 

unfamiliar with the ML fundamentals with means to easily carry out such analysis, could still be 69 

misused by providing a false sense of analysis interpretation [31]. Another concern of utilizing 70 

user-ready approaches to carry out ML analysis lies in the need for compiling proper observations 71 

(i.e. datapoints). In some classical fields (say material sciences, earthquake or fire engineering) 72 

where there is a limited number of observations due to expensive tests, or need for specialized 73 

instrumentation/facilities [32], then the use of ML may lead to a biased outcome – especially when 74 

combined with lack of expertise on ML [33, 34].  75 

 76 

An examination of open literature raises a few questions: 1) are we developing accurate ML 77 

models? 2) are such models useful to our fields? 3) are we properly validating ML models? And 78 

4) how to confidently answer “yes” to the aforementioned questions? 79 

 80 

A distinction should be drawn in which we need to acknowledge that, we often apply existing ML 81 

algorithms to our problems rather than developing new algorithms. This acknowledgment goes 82 

hand in hand with that similar to applying other numerical tools such as the finite element method, 83 
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to investigate the response of materials and structures (say concrete beams) under harsh 84 

environments (i.e. fire conditions) [35, 36]. From this perspective, we use an existing tool, say a 85 

finite element (FE) software (ANSYS [37], ABAQUS [38] etc.), to investigate how failure 86 

mechanism occurs in a concrete beam under fire. The accuracy of this FE model is often 87 

established through a validation procedure in which a comparison of predictions from the FE 88 

model (say temperature rise in steel rebars or mid-span deflection during a fire, or in some cases, 89 

point in time when the beam fails) is plotted against that measured in an actual fire test. If the 90 

comparison is deemed well, then the FE model is said to be valid and hence can be used to explore 91 

the effect of key response parameters (i.e. magnitude of loading, strength of concrete, intensity of 92 

fire etc.). From this perspective, the validity of an FE model is established if the variation between 93 

predicted results and measured observations is between 5-15%* [39].  94 

 95 

Unlike the use of FE simulation, ML is often used in two domains: 1) to show the applicability of 96 

ML to understand a phenomenon [40, 41], and 2) to identify hidden patterns governing a 97 

phenomenon [33, 42]. In the first domain, ML is primarily used to show that an ML algorithm can 98 

replicate a phenomenon – or in other words, to validate the applicability of that particular ML 99 

algorithm to a material science problem (i.e. can deep learning be applied to predict the 100 

compressive strength of concrete given that information regarding the components in a concrete 101 

mix is available?). While works in this domain showcase the diversity of ML, these also provide 102 

an additional validation platform/case studies to already well-established algorithms. The 103 

contribution of such works to our knowledge base is to be thanked and acknowledged. 104 

 105 

The second domain is where ML shines and can be proven as a powerful ally to researchers. This 106 

is because ML strives on data and is designed to explore hidden features and patterns. The 107 

integration of these two items has not been thoroughly applied into our fields and, if applied 108 

properly, cannot only open new opportunities but also revolutionize our perspective into our fields. 109 

Unfortunately, the open literature continues to lack works in this domain, and hence such works 110 

are to be encouraged. 111 

 112 

Whether ML is used in the first or second domain, ML models need to be rigorously assessed [43, 113 

44]. This is a critical key to ensure: 1) the validity of the developed ML model in understanding a 114 

complex phenomenon given a limited set of data points, and 2) proper extension of the same 115 

models towards new/future datasets. Traditionally, the adequacy of ML models is often established 116 

through performance fitness and error metrics (PFEMs). Performance and error measures are vital 117 

elements in the process of evaluating ML models/frameworks. These are defined as logical and/or 118 

mathematical constructs intended to measure the closeness of actual observations to that expected 119 

(or predicted). In other words, PFEMs are used to establish an understanding of how predictions 120 

from a model compare to real (or measured) observations. Such metrics often relate to the variation 121 

between predicted and measured observations in terms of errors [45–47].  122 

 
*One should note that the validation of an FE model is also governed by satisfying convergence criteria input in the 

FE software. More on this can be found elsewhere [37, 38].  
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Diverse sets of performance metrics have been noted in the open literature i.e. correlation 123 

coefficient (R), root mean squared error (RMSE), etc. In practice, one, a multiple, or a combination 124 

of metrics are used to examine the adequacy of a particular ML model. However, there does not 125 

seem to be a systematic view into which scenarios specific metrics are preferable to use. In order 126 

to bridge this knowledge gap, this work compiles the commonly-used PFEMs and highlights their 127 

use in evaluating the performance of regression and classification ML models.  128 

 129 

2. Performance Fitness and Error Metrics 130 

This section presents the most widely-used PFEMS and highlights fundamentals, 131 

recommendations, and limitations associated with their use in assessing ML models†. In this work, 132 

PFEMs are grouped under two categories; traditional and modern. In this section, these reoccurring 133 

terms are used; A: actual measurements, P: predictions, n: number of data points.  134 

 135 

2.1 Regression    136 

Regression ML methods deal with predicting a target value using independent variables. Some of 137 

these methods include artificial neural networks, genetic programing, etc. PFEMs grouped herein 138 

belong to a group of metrics that are based on methods to calculate point distance primarily using 139 

subtraction or division operations. These metrics contain fundamental operations, either A-P or 140 

P/A, and can be supplemented with absoluteness or squareness. These are the most widely-used 141 

metrics in literature. The simplest form of common PFEMs results from subtracting a predicted 142 

value from its corresponding actual/observed value. This is often straightforward, easy to interpret, 143 

and most of all yields the magnitude of error (or difference) in the same units as those measured 144 

and predicted and can indicate if the model overestimates or underestimates observations (by 145 

analyzing the sign of the reminder). One should remember that an issue could arise where due to 146 

the opposite between predictions and observations i.e. canceling positive and negative errors. In 147 

this scenario, a zero error could be calculated, indicating false accuracy.  148 

 149 

This can be avoided by using an absolute error (i.e. |A-P|) which only yields non-negative values. 150 

Analogous to traditional error, the absolute error also maintains the same units of predictions (and 151 

observations), and hence is easily relatable. However, due to its nature, the bias in absolute errors 152 

cannot be determined.  153 

 154 

Similar to the same concept of absolute error, the squared error also mitigates mutual cancellation 155 

of errors. This metric can be continuously differentiable and thus facilitates optimization. 156 

However, this metric emphasizes relatively large errors (as opposed to small errors), unlike 157 

absolute error, and could be susceptible to outliners. The fact that the units of squared error is 158 

squared leads to unconventional units for error (i.e. squared days); which are not intuitive. Other 159 

metrics may also include logarithmic quotient error (i.e. ln(P/A)) as well as absolute logarithmic 160 

 
† It should be noted that other works have used a different classification for PFEMs [2]. Botchkarev [2] went even 

further to survey the most preferred metrics reported by researchers during the 1980-2007 era and also explored 

multiplication and addition point distance methods.  
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quotient error (i.e. |ln(P/A)|). Table 1 lists other commonly used metrics, together with some of 161 

their limitations and shortcomings as identified by surveyed studies.  162 
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Table 1 List of commonly used PFEMs for ML regression models as collected from open literature   163 
No. Metric Definition Formula Remarks 

1 Error (E) 

The amount by which an 

observation differs from its actual 

value. 
𝐸 = 𝐴 − 𝑃 

• Intuitive 

• Easy to apply 

• Works with numeric data 

2 
Mean error 

(ME) 
The average of all errors in a set. 𝑀𝐸 =  

∑ 𝐸𝑖
𝑛
𝑖=1

𝑛
 

• May not be helpful in cases where positive and negative 

predictions cancel each other out.  

• Works with numeric data 

3 

Mean 

Normalized 

Bias (MNB) 

Associated with observation-

based minimum threshold. 𝑀𝑁𝐵 =  
∑ 𝐸𝑖/𝐴𝑖

𝑛
𝑖=1

𝑛
 

• Biased towards overestimations.  

• Works with numeric data 

4 

Mean 

Percentage 

Error (MPE) 

Computed average of percentage 

errors. 
𝑀𝑃𝐸 =  

∑ 𝐸𝑖/𝐴𝑖
𝑛
𝑖=1

𝑛/100
 

• Undefined whenever a single actual value is zero. 

• Works with numeric data 

5 

Mean 

Absolute 

Error (MAE)* 

Measures the difference between 

two continuous variables. 𝑀𝐴𝐸 =  
∑ |𝐸𝑖|

𝑛
𝑖=1

𝑛
 

• Uses a similar scale to input data [48]. 

• Can be used to compare series of different scales. 

• Works with numeric data 

6 

Mean 

Absolute 

Percentage 

Error 

(MAPE)* 

Measures the extent of error in 

percentage terms. 
𝑀𝐴𝑃𝐸 =

100

𝑛
 ∑|𝐸𝑖|/|𝐴𝑖|

𝑛

𝑖=1

 

• Commonly-used as a loss function [49] 

• Cannot be used if there are actual zero values. 

• Percentage error cannot exceed 1.0 for small predictions. 

• There is no upper limit to percentage error in predictions 

that are too high. 

• Non-symmetrical (adversely affected if a predicted value 

is larger or smaller than the corresponding actual value) 

[49]. 

• Works with numeric data 

7 

Relative 

Absolute 

Error (RAE) 

Expressed as a ratio comparing 

the mean error to errors produced 

by a trivial model. 

𝑅𝐴𝐸 =  ∑|𝐸𝑖|/|𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛|

𝑛

𝑖=1

 
• Ei ranges from zero (being ideal) to infinity. 

• Works with numeric data 

8 

Mean 

Absolute 

Relative 

Error 

(MARE) 

Measures the average ratio of 

absolute error to random 

error. 

𝑀𝐴𝑅𝐸 =
1

𝑛
∑|𝐸𝑖|/|𝐴𝑖|

𝑛

𝑖=1

 

• Sensitive to outliers (especially of low values). 

• Division by zero may occur (if actuals contain zeros). 

• Works with numeric data 

9 

Mean 

Relative 

Absolute 

Error 

(MRAE) 

Ratio of accumulation of errors to 

cumulative error of random 

error. 
𝑀𝑅𝐴𝐸 =  

∑ |𝐸𝑖|/|𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛|𝑛
𝑖=1  

𝑛
 

• For a perfect fit, the numerator equals to zero [50]. 

• Works with numeric data 

10 

Geometric 

Mean 

Absolute 

Error 

(GMAE)* 

Defined as the n-th root of the 

product of error values. 

 
𝐺𝑀𝐴𝐸 =  √∏|𝐸𝑖|

𝑛

𝑖=1

𝑛

 

• GMAE is more appropriate for averaging relative 

quantities as opposed to arithmetic mean [51]. 

• This metric can be dominated by large outliers and minor 

errors (i.e. close to zero). 

• Works with numeric data 

11 

Fractional 

Absolute 

Error (FAE) 

Evaluates the absolute fractional 

error. 
𝐹𝐴𝐸 =

1

𝑛
∑

2 × |𝐸𝑖| 

|𝐴𝑖| + |𝑃𝑖|

𝑛

𝑖=1

 • Works with numeric data 

12 

Mean 

Squared 

Error (MSE) 

Measures the average of the 

squares of the errors. 𝑀𝑆𝐸 =  
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
 

• Scale dependent [52]. 

• Values closer to zero present adequate state 

• Heavily weights outliers. 

• Highly dependent on fraction of data used (low reliability) 

[53]. 

• Works with numeric data 

13 

Root Mean 

Squared 

Error 

(RMSE) 

Root square of average squared 

error. 𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
 

• Scale dependent. 

• A lower value for RMSE is favorable. 

• Sensitive to outliers. 

• Highly dependent on fraction of data used (low reliability) 

[53]. 

• Works with numeric data 

14 

Sum of 

Squared 

Error (SSE) 

Sums the squared differences 

between each observation and its 

mean. 

𝑆𝑆𝐸 =  ∑ 𝐸𝑖
2

𝑛

𝑖=1

 
• A small SSE indicates a tight fit [54]. 

• Works with numeric data 

15 

Relative 

Squared 

Error (RSE) 

Normalizes total squared error by 

dividing by the total squared 

error. 

𝑅𝑆𝐸 =  ∑ 𝐸𝑖
2/(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 

• A perfect fit is achieved when the numerator equals to 

zero [50]. 

• Works with numeric data 

16 

Root Relative 

Squared 

Error (RRSE) 

Evaluates the root relative 

squared error between two 

vectors. 
𝑅𝑅𝑆𝐸 =  √∑ 𝐸𝑖

2/(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 
• Ranges between zero and 1, with zero being ideal [50]. 

• Works with numeric data 

17 

Geometric 

Root Mean 

Squared 

Error 

(GRMSE) 

Evaluates the geometric root 

squared errors. 
𝐺𝑅𝑀𝑆𝐸 =  √∏ 𝐸𝑖

2

𝑛

𝑖=1

2𝑛

 

• Scale dependent. 

• Less sensitive to outliners than RMSE [52]. 

• Works with numeric data 

18 

Mean Square 

Percentage 

Error 

(MSPE)* 

Evaluates the mean of square 

percentage errors. 
𝑀𝑆𝑃𝐸 =  

∑ (|𝐸𝑖|/|𝐴𝑖|)
2𝑛

𝑖=1

𝑛/100
 

• Non-symmetrical [49]. 

• Works with numeric data 

19 

Root Mean 

Square 

Percentage 

Error 

(RMSPE)* 

Evaluates the mean of squared 

errors in percentages. 𝑅𝑀𝑆𝑃𝐸 =  √
∑ (|𝐸𝑖|/|𝐴𝑖|)

2𝑛
𝑖=1

𝑛/100
 

• Scale independent. 

• Can be used to compare predictions from different 

datasets. 

• Non-symmetrical [49]. 

• Works with numeric data 
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• An extension of RMSE 

20 

Normalized 

Root Mean 

Squared 

Error 

(NRMSE)** 

Normalizes the root mean 

squared error. 𝑁𝑅𝑀𝑆𝐸 =
√∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
𝐴𝑚𝑒𝑎𝑛

 

• Can be used to compare predictions from different 

datasets [55]. 

• Works with numeric data 

• An extension of RMSE 

21 

Normalized 

Mean 

Squared 

Error 

(NMSE) 

Estimates the overall deviations 

between measured values and 

predictions. 

𝑁𝑀𝑆𝐸 =

∑ 𝐸𝑖
2𝑛

𝑖=1

𝑛
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒2

 

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑(𝑥𝑖 − 𝑚𝑒𝑎𝑛)2

𝑛 − 1
 

 

• Biased towards over-predictions [56]. 

• Works with numeric data 

• An extension of MSE 

22 

Coefficient 

of 

Determinatio

n (R2) 

The square of correlation. 𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)
2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 

• R2 values close to 1.0 indicate strong correlation. 

• Can be used in predicting material properties.  

• Works with numeric data 

• Related to R 

23 

Correlation 

coefficient 

(R) 

Measures the strength of 

association between variables. 

𝑅 =

∑ (𝐴𝑖 − 𝐴𝑖)(𝑃𝑖 − 𝑃𝑖)
𝑛

𝑖=1

√∑ (𝐴𝑖 − 𝐴𝑖)
2

𝑛

𝑖=1
∑ (𝑃𝑖 − 𝑃𝑖)

2
𝑛

𝑖=1

 

• R>0.8 implies strong correlation [57]. 

• Does not change by equal scaling. 

• Can be used in predicting material properties. 

• Works with numeric data 

24 

Mean 

Absolute 

Scaled Error 

(MASE) 

Mean absolute errors divided by 

the mean absolute error. 

∑
𝐸𝑖

𝐴𝑖

𝑛
𝑖=1

𝑛/100
/(

1

𝑛
− 1) ∑|𝐴𝑖 − 𝐴𝑖−1|

𝑛

𝑖=1

 

• Scale independent. 

• Stable near zero [52]. 

• Works with numeric data 

25 

Golbraikh 

and 

Tropsha’s 

[58] criterion 

 

At least one slope of regression lines (k or k′) between the 

regressions of actual (Ai ) against predicted output (Pi ) 

or Pi  against Ai through the origin, 

i.e. Ai  = k×Pi and Pi  = k′ Ai , respectively. 

𝑘 =
∑ (𝐴𝑖 × 𝑃𝑖)

𝑛
𝑖=1

𝐴𝑖
2  

𝑘′ =
∑ (𝐴𝑖 × 𝑃𝑖)

𝑛
𝑖=1

𝑃𝑖
2  

𝑚 =
𝑅2 − 𝑅𝑜

2

𝑅2
 

𝑛 =
𝑅2 −   𝑅𝑜′

2

𝑅2
 

• k and k′ need to be close to 1 or at least within the range of 

0.85 and 1.15. 

• m and n are performance indexes and their absolute value 

should be lower than 0.1. 

• Works with numeric data 

 

26 

QSAR model 

by Roy and 

Roy [59] 

- 

𝑅m = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜
2|) 

where,  

− 
∑ (𝑃𝑖 − 𝐴𝑖

𝑜)2𝑛

𝑖=1

∑ (𝑃𝑖 − 𝑃𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

, 𝐴𝑖
𝑜 = 𝑘 × 𝑃𝑖𝑅′𝑜

2

= 1 −  
∑ (𝐴𝑖 − 𝑃𝑖

𝑜)2𝑛

𝑖=1

∑ (𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

, 𝑃𝑖
𝑜 = 𝑘′ × 𝐴𝑖 

• Rm is an external predictability indicator. Rm > 0.5 implies 

a good fit. 

• Works with numeric data 

 

27 

Frank and 

Todeschini 

[60] 

- 

 

Recommend maintaining a ratio of 3-5 between the 

number of observations and input parameters. 

 

- 

28 

Objective 

function by 

Gandomi et 

al. [61] 

A multi-criteria metric. 

Function

= (
No.𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔− No.Validation

No.Training+ No.Validation

)
RMSE𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 + MAELearning

𝑅Learning + 1

+
2No.Validation

No.𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔+ No.Validation

RMSEValidation + MAEValidation

𝑅𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 + 1
 

 

where, No.Training and No.Validation are the number of 

training and validation data, respectively. 

• This function needs to be minimized to yield highest 

fitness. 

• Can be used in predicting material properties. 

• Works with numeric data 

29 

Reference 

index (RI) by 

Cheng et al. 

[62] 

A multi-criteria metric that 

uniformly accounts for RMSE, 

MAE and MAPE. 
𝑅𝐼 =

𝑅𝑀𝑆𝐸 + 𝑀𝐴𝐸 + 𝑀𝐴𝑃𝐸

3
 

• Each fitness metric is normalized to achieve the best 

performance. 

• Works with numeric data 

• An extension of RMSE, MAE and MAPE 

30 
Scatter index 

(SI) [63] 

Applied to examine whether 

RMSE is good or not. 

𝑆𝐼 =

√∑ (𝑃𝑚𝑎𝑥(𝐴) − 𝑃𝑚𝑎𝑥(𝑝))2
𝑛

𝑖=1

𝑛

𝑃𝑚𝑎𝑥(𝑝)

́
 

where, n = number of data sets used during the training 

phase. 𝑃𝑚𝑎𝑥(𝑝)

́

= mean actual observations data 

• SI is RMSE normalised to the measured data mean  

• If SI is less than one, then estimations are acceptable. 

• Works with numeric data 

• “excellent performance” when SI < 0.1, a “good 

performance” when 0.1 < SI < 0.2, a “fair performance” 

when 0.2 < SI < 0.3, and a “poor performance” when 

SI > 0.3 

31 

Synthesis 

index (SyI) 

[64]  

Comprehensive performance 

measure a based on MAE, 

RMSE, and MAPE a 

SyI =
1

n
∑ (

Pi − Pmin,i

Pmax,i − Pmin,i
)

n

i=1

 

where, n = number of performance measures; and Pi = 

ith performance measure. 

• The SI ranged from 0 to 1; an SI value close to 0 indicated 

a highly accurate predictive model. 

• Works with numeric data 

32 

Relative root 

mean squared 

error 

(RRMSE) 

[65]  

Present percentage variation in 

accuracy 

 
𝑅𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝐴 − 𝑃)2 

• Lower RRMSE values result in more accurate model 

predictions. 

• Works with numeric data 

33 

Performance 

index (PI) 

[65] 

Performance index to evaluate 

predictivity of a model 
𝑃𝐼 =

𝑅𝑅𝑀𝑆𝐸

1 + 𝑅
 

• Lower PI values result in more accurate model 

predictions. 

• Works with numeric data 

https://doi.org/10.1007/s44150-021-00015-8
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34 a20−index [66] 

Performance index to evaluate 

predictivity of a model within 

20% variation 

𝑎20−𝑖𝑛𝑑𝑒𝑥 =
𝑚20

𝑀
 

where, m20 is the number of samples with the ratio of 

experimental 

value over predicted value falling from 0.8 to 1.2 

and M is the number of samples in the dataset. 

• Presents the number of samples with the difference 

between the predicted value and experimental value 

within ±20% 

• Works with numeric data 

35 

Fractional 

bias (FB) 

[67] 

Measure of the shift between the 

observed and predicted values. 

 

𝐹𝐵 =
2 ∑ (A − P)

𝑛

𝑖=1

∑ (A + P)
𝑛

𝑖=1

 

• Dimensionless metric, which is convenient for comparing 

the results from studies involving different scales 

• Symmetrical and bounded; values for the fractional bias 

range between -2.0 (extreme underprediction) to +2.0 

(extreme overprediction) 

• Perfect model has FB of zero. 

• Works with numeric data 

36 

Relative 

index of 

agreement 

(RD) [68] 

A standardized measure of the 

degree of model prediction error 
RD = 1 −

∑ (
𝐴 − P

A
)

𝑁

𝑖=1

∑ (
(|P − A| + |𝐴 − A|)

A
)2

𝑁

𝑖=1

 

• A value of 1.0 indicates a perfect match, and zero 

indicates no agreement at all. 

• Overly sensitive to extreme values 

• Works with numeric data 

37 

Nash–

Sutcliffe 

coefficient 

(NSE) [69] 

A metric often used in flow 

predictions.  
NSE = 1 − [

∑ (𝐴 − 𝑃)2𝑁

𝑖=1

∑ (A − A)2
𝑁

𝑖=1

] 

• NSE = 1 indicates perfect correspondence  

• NSE = 0 indicates that the model simulations have the 

same explanatory power as the mean of the observations 

• NSE < 0 indicates that the model is a worse predictor than 

the mean of the observations 

• Works with numeric data 

38 

Kling–Gupta 

efficiency 

(KGE) [70] 

A metric often used in flow 

predictions.  

KGE = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2, 
where, r is the linear correlation between the predicted 

and actuals. α is the magnitude of the variability 

calculated as the standard deviation in predictions divided 

by the standard deviation in actuals. β is the bias term 

calculated as the predictions means divided by the actual 

mean. N is the number of dataset over the training and 

testing phases. 

• KGE = 1 indicates perfect agreement between actuals and 

predictions. 

• KGE < 0 indicates that the mean of actuals provides better  

estimate than predictions 

• For other values of KGE, please refer to [71] 

• Works with numeric data 

*has a median derivative  164 
**can be normalized by standard deviation of actual observations 165 
***The reader is encouraged to review the cited references for full details on specific metrics. 166 
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 Most of the works conducted so far in the areas of engineering applications only utilized a few of 167 

the above PFEMs [20, 33, 61, 62, 72–92]. The bulk of the reviewed works continue to incorporate 168 

traditional metrics such as R, R2, MAE, MAPE, and RMSE as primary indicators of adequacy of 169 

the regression-based ML models. This seems to stem from our familiarity with these indicators, as 170 

opposed to others; such as Golbraikh and Tropsha’s [58] criterion, QSAR model by Roy and Roy 171 

[59], Frank and Todeschini [60], and specifically designed objective functions, often used in the 172 

realms of other fields and data sciences. It should be noted that out of the reviewed studies, the 173 

works of Gandomi et al. [90], Golafshani and Behnood [40] as well as Cheng et al. [62] applied a 174 

multi-criteria verification process that incorporated the use of traditional as well as modern 175 

PFEMs. Utilizing multi-criteria is not only beneficial to ensure the validity of a particular ML 176 

model but is also recommended to overcome some of the identified limitations of traditional 177 

metrics in Table 1 and hence should be encouraged.  178 

 179 

2.2 Classification    180 

In ML, classification refers to categorizing data into distinct classes. This is a supervised learning 181 

approach where machines learn to classify observations into binary or multi-classes. Binary classes 182 

are those with two labels (i.e. positive vs. negative etc.), and multi-classes are those having more 183 

than two labels (i.e. types of concrete e.g., normal strength, high strength, high performance etc.). 184 

Classification algorithms may include logistic regression, k-nearest neighbors, support vector 185 

machines, etc. [93, 94].  186 

 187 

The performance of classifiers is often listed in a confusion matrix. This matrix contains statistics 188 

about actual and predicted classifications and lays the fundamental foundations necessary to 189 

understand accuracy measurements for a specific classifier. Each column in this matrix signifies 190 

predicted instances, while each row represents actual instances. This matrix was identified to be 191 

the “go-to” metric used in studies examining materials science and engineering problems [22, 95–192 

98]. However, there are other PFEMs that can be used to evaluate classification models, and these, 193 

along with others, are listed in Table 2. Similar to Table 1, Table 2 also lists some of the remarks 194 

and limitations pointed out by surveyed works. In this table, P (denotes number of real positives), 195 

N (denotes number of real negatives), TP (denotes true positives), TN (denotes true negatives), FP 196 

(denotes false positives), and FN (denotes false negatives).  197 
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Table 2 List of the commonly-used PFEMs for ML classification models as collected from open literature   198 
No. Metric Definition Formula Remarks 

1 

True Positive 

Rate (TPR) or 

Sensitivity or 

Recall 

 

Measures the 

proportion of 

actual positives 

that are correctly 

identified as 

positives. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 1 − 𝐹𝑁𝑅 

• Describes the proportion of actual positives that 

are correctly identified. 

• Does not account for indeterminate results. 

• Works with categorial data 

2 

True Negative 

Rate (TNR) or 

Specificity or 

selectivity 

Measures the 

proportion of 

actual negatives 

that are correctly 

identified 

negatives. 

𝑇𝑁𝑅 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 1 − 𝐹𝑃𝑅 

• Describes the proportion of actual negatives that 

are correctly identified. 

• Works with categorial data 

3 

Positive 

Predictive 

Value (PPV) or 

Precision 

The proportions 

of positive 

observations that 

are true positives. 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
= 1 − 𝐹𝐷𝑅 

• Has an ideal value of 1 and the worst value of 

zero. 

• Works with categorial data 

4 

Negative 

Predictive 

Value (NPV) 

The proportions 

of negative 

observations that 

are true positives. 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
= 1 − 𝐹𝑂𝑅 

• Has an ideal value of 1 and the worst value of 

zero. 

• Works with categorial data 

5 
False Positive 

Rate (FPR) 

Measures the 

proportion of 

positive cases in 

that are correctly 

identified as 

positives. 

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
=

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑇𝑁𝑅 

• Describes proportion of negative cases 

incorrectly identified as positive cases. 

• Works with categorial data 

6 

False 

Discovery Rate 

(FDR) 

Expected 

proportion of false 

observations. 
𝐹𝐷𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑃
= 1 − 𝑃𝑃𝑉 

• Describes proportion of the individuals with a 

positive test result for which the true condition is 

negative. 

• Works with categorial data 

7 
False Omission 

Rate (FOR) 

Measures the 

proportion of false 

negatives that are 

incorrectly 

rejected. 

𝐹𝐷𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃𝑁
= 1 − 𝑁𝑃𝑉 

• Describes proportion of the individuals with a 

negative test result for which the true condition 

is positive. 

• Works with categorial data 

8 

Positive 

likelihood ratio 

(LR+) 

Evaluates the 

change in the 

odds of having a 

diagnosis with a 

positive test. 

𝐿𝑅+=
𝑇𝑃𝑅

𝐹𝑃𝑅
 

• Measures the ratio of TPR (sensitivity) to the 

FPR (1 – specificity).  

• Presents the likelihood ratio for increasing 

certainty about a positive diagnosis. 

• Works with categorial data 

9 

Negative 

likelihood ratio 

(LR-) 

Evaluates the 

change in the 

odds of having a 

diagnosis with a 

negative test. 

𝐿𝑅−=
𝐹𝑁𝑅

𝑇𝑁𝑅
 

• Describes the ratio of FNR to TNR (specificity). 

• Works with categorial data 

10 

Diagnostic 

odds ratio 

(DOR) 

Measures the 

effectiveness of a 

(diagnostic) test. 

𝐷𝑂𝑅 =
𝐿𝑅 +

𝐿𝑅 −
=

𝑇𝑃/𝐹𝑃

𝐹𝑁/𝑇𝑁
 

• Often used in binary classification. 

• Works with categorial data 

11 
Accuracy 

(ACC) 

Evaluates the ratio 

of number of 

correct 

predictions to the 

total number of 

samples. 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

• Presents performance at a single class threshold 

only. 

• Assumes equal cost for errors [96]. 

• Works with categorial data 

12 F1 score 

Harmonic mean 

of the precision 

and recall. 
𝐹1 =

2𝑃𝑃𝑉 × 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

• Describes the harmonic mean of precision and 

sensitivity. 

• Focuses on one class only. 

• Biased to the majority class [99]. 

• Works with categorial data 

13 

Matthews 

Correlation 

Coefficient 

(MCC) 

Measures the 

quality of binary 

classifications 

analysis. 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝑃𝑁)
 

• Measures the quality of binary and multi-class 

classifications. 

• Can be used in classes with different sizes. 

• When MCC equals +1 → perfect prediction, → 0 

equivalent to a random prediction and → −1 

false prediction. 

• Considered as a balanced measures as it involves 

values of all the four quardants of a confusion 

matrix [100]. 

• Works with categorial data 

14 

Bookmaker 

Informedness 

(BM) or 

Youden's J 

statistic 

Evaluates the 

discriminative 

power of the test 

[101]. 

𝐵𝑀 = 𝑇𝑃𝑅 + 𝑇𝑁𝑅 − 1 

• Describes the probability of an informed decision 

(vs. a random guess). 

• Has a range between zero and 1 (being ideal). 

• Considers both real positives and real negatives.  

• Takes into account all predictions [102]. 

• Works with categorial data 

• Counterpart of recall. 

• It is also suitable with imbalanced data.  

• It does not change concerning the differences 

between the sensitivity and specificity [101]. 

15 
Markedness 

(MK) 

Measures 

trustworthiness of 

positive and 

𝑀𝐾 = 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1 
• Measures trustworthiness of positive and 

negative predictions by a model [103]. 
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negative 

predictions. 
• Considers both predicted positives and predicted 

negatives. 

• Counterpart of precision.  

• Specifies the probability that a condition is 

marked by the predictor (as opposed to 

luck/chance) [104] 

• Sensitive to data changes (not suitable for 

imbalanced data) [101]. 

• Works with categorial data 

16 

Average Class 

Accuracy 

(ACA) 

Measures the 

average accuracy 

of predictions in a 

class. 

𝐴𝐶𝐴 = 𝑊 (
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
) + (1 − 𝑊) (

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

𝑤ℎ𝑒𝑟𝑒  0 < 𝑊 <  1  

• Used with unbalanced data. 

• Choosing a good weighting factor a priori [99]. 

• When W > 0.5, minority class accuracy 

contributes more than majority class. 

• Presents performance at a single class threshold. 

• Works with categorial data 

17 

Receiver 

Operating 

Characteristic 

(ROC) 

Plots the 

diagnostic ability 

of a binary 

classifier system 

as its 

discrimination 

threshold is 

varied. 

The ROC curve is plotted such that TPR is on vertical axis and FPR is 

on the horizontal axis (the line TPR = FPR represents a random guess 

of a specific class) [105].  

 

• Characterizes tradeoff between hit rate and false 

alarm rate.  

• Designates the relationship between sensitivity 

and specificity [106]. 

• Takes a value between zero and 1 to relate the 

probability distribution  to a single state [107]. 

• A threshold of zero ensures highest sensitivity 

and 1 ensures best specificity. 

• Can be used to estimate cost ratio (slope of line 

tangent to ROC curve). 

• Should be used in datasets with roughly equal 

numbers of observations for each class [108, 

109]. 

• Works with categorial data 

18 

Area under the 

ROC curve 

(AUC) 

Measures the two-

dimensional area 

underneath the 

entire ROC curve. 

𝐴𝑈𝐶= ∑
1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖) 

or 

𝐴𝑈𝐶=
1

2
𝑤 (ℎ + ℎ′),  

where, w = width, and h and h’ =  heights of the sides of a trapezoid 

histogram  

• Not dependent on a single class threshold. 

• Associated with increased training times. 

• Works with categorial data 

19 
Precision-

Recall curve 

Plots the tradeoff 

between precision 

and recall for 

different 

thresholds. 

Plots precision (in the vertical axis) and the recall (in the horizontal 

axis) for different thresholds. 

• Applicable in cases of moderate to large class 

imbalance [108]. 

• Used in binary classification. 

20 
Log Loss Error 

(LLE) 

Measures the 

where the 

prediction input is 

a probability 

value. 

𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃

𝑀

𝑐=1

, 

where, M:  number of classes, c: class label, y: binary indicator (0 or 1) 

if c is the correct classification for a given observation. 

 

• Measures the uncertainty of the probabilities by 

comparing predictions to the true labels.  

• Penalizes for being too confident in wrong 

prediction. 

• Has probability between zero and 1. 

• A log loss of zero indicates a perfect model. 

• Works with categorial data 

21 
Hinge Loss 

Error (HLE) 
- 

𝐻𝐿𝐸 = 𝑚𝑎𝑥(0,1 − 𝑞 · 𝑦) 

where, q= ±1 and y: classifier score 

• Linearly penalize incorrect predictions. 

• Primarily used in support vector machine. 

22 

Wilcoxon–

Mann–Whitney 

(WMW) test 

[99] 

- 
𝑊𝑀𝑊 =

∑ ∑ 𝐼𝑤𝑚𝑤(𝑃𝑖 , 𝑃𝑗)𝑖∈𝑀𝑎𝑗𝑜𝑟 𝑐𝑙𝑎𝑠𝑠𝑖∈𝑀𝑖𝑛𝑜𝑟 𝑐𝑙𝑎𝑠𝑠

|𝑀𝑖𝑛𝑜𝑟 𝑐𝑙𝑎𝑠𝑠| × |𝑀𝑎𝑗𝑜𝑟 𝑐𝑙𝑎𝑠𝑠|
,  

where, Pi and Pj: outputs when evaluated on an example from the 

minority and majority classes, respectively 

• Used in scenarios with unbalanced data. 

• The indicator function Iwmw returns 1 if Pi > Pj and 

Pi ≥ 0 or 0 if otherwise. 

23 

Fitness 

Function Amse 

(FFA) [99] 

Measures pattern 

difference 

between input and 

output. 

𝐹𝐹𝐴 =
1

𝐾
∑ (1 −

∑ (1 − 𝑠𝑖𝑔(𝑃𝑐𝑖) − 𝑇𝑐)𝑁𝑐
𝑖=1  

𝑁𝑐 × 2
)

2𝐾

𝑐=1

, 

𝑠𝑖𝑔(𝑥) =
2

1 + 𝑒−𝑥
+ 1 

where, Pci: output of a classifier evaluated on the ith example, Nc: 

number of examples, K: number of classes,  Tc : target values (equals to 

-0.5 and 0.5 for majority and minority classes, respectively) 

• Used in scenarios with unbalanced data. 

• Appropriate for genetic programing. 

• Needs to be scaled to a range of [-1, 1] and hence 

the need for sigmoid function. 

• FFA = 1 presents an ideal scenario. 

24 

Fitness 

Function Incr 

(FFI) [99] 

- 

𝐼𝑛𝑐𝑟 =
1

𝐾
∑ (

∑ [𝐼𝑧𝑡(𝑗, 𝐷𝑐𝑗 , 𝑐). ∑ 𝐸𝑞(𝐷𝑐𝑗 , 𝑃𝑐𝑖)
𝑁𝑐
𝑖=1 ]

𝑀𝑐
𝑗=1

1
2

𝑁𝑐(𝑁𝑐 + 1)
)

𝐾

𝑐=1

 

 

𝐼𝑧𝑡(𝑟, 𝑘, 𝑐) =  {

𝑟,  if 𝑘 ≥ 0 and 𝑐 ∈ 𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠

 or if 𝑘 < 0 and 𝑐 ∈ 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑐𝑙𝑎𝑠𝑠
0,  otherwise

𝐸𝑞(𝑝, 𝑞) =  {
1,  if 𝑝 = 𝑞 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

• Used in scenarios with unbalanced data. 

• Assigns incremental rewards to predictions that 

fall further away from the class boundary. 

• Appropriate for genetic programming. 

• Ranges [0, 1] (zero being worst fitness). 

25 

Fitness 

Function 

Correlation 

(FFC) 

- 

𝐹𝐹𝐶 =
1

𝐾
(𝑟 + 𝐼𝑧𝑡(1, 𝜇𝑚𝑖𝑛𝑜𝑟, 𝜇𝑚𝑎𝑗𝑜𝑟), 

𝑟 =   √
∑ 𝑁𝑐(𝜇𝑐 − 𝜇̅)2𝐾

𝑐=1

∑ ∑ (𝑃𝑐𝑖 − 𝜇̅)2𝑁𝑐
𝑖=1

𝐾
𝑐=1

𝜇𝑐 =  
∑ 𝑃𝑐𝑖

𝑁𝑐
𝑖=1

𝑁𝑐
,  𝜇̅ =

∑ 𝑁𝑐𝜇𝑐
𝐾
𝑐=1

∑ 𝑁𝑐
𝐾
𝑐=1

.

 

where, r: correlation ratio, μminor 

and μmajor: mean for minor and major classes, respectively  

 

• Used in scenarios with unbalanced data. 
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26 

Fitness 

Function 

Distribution 

(FFD) 

Measures the 

distance between 

class distributions 

as a function of 

class separability. 

𝐹𝐹𝐷 =
|𝜇min − 𝜇maj|

𝜎min + 𝜎maj

× 𝐼𝑧𝑡(2, 𝜇min, 𝜇maj) 

𝜇𝑐 =
∑ 𝑃𝑐𝑖

𝑁𝑐
𝑖=1

𝑁𝑐
,  𝜎𝑐 = √

1

𝑁𝑐
∑(𝑃𝑐𝑖 − 𝜇𝑐)2

𝑁𝑐

𝑖=1

. 

where, μc and σc: mean and standard deviation of the class distribution, 

respectively,  

 

 

• Used in scenarios with unbalanced data. 

• Treats predictions as independent distributions. 

• Measures separability (i.e. distance between class 

distributions) [110] – high separability (no 

overlap) and this distance turns large (go to +∞). 

• Uses Izt to enforce zero class threshold. 

27 
Canberra 

Metric (CM) 

Measures the 

distance between 

pairs of points in a 

vector space. 

𝐶𝑀 = ∑
|𝐸𝑖| 

𝐴𝑖 + 𝑃𝑖

𝑛

𝑖=1

 - 

28 

Wave Hedges 

Distance 

(WHD) 

- 𝑊𝐻𝐷 =  ∑
|𝐸𝑖| 

𝑚𝑎𝑥 (𝐴𝑖 , 𝑃𝑖)

𝑛

𝑖=1

 
• Normalizes the difference of each pair of 

coefficients with its maximum [111–113]. 

29 Lift [114] 

Measures the 

performance of a 

model at 

predicting or 

classifying cases. 

𝐿𝐼𝐹𝑇 =  
%𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

%𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

• Measures betterness of  a classifier than a 

baseline classifier that randomly predicts 

positives. 

• Threshold is set as a static fraction of the positive 

dataset. 

• Lift and Accuracy do not always correlate well. 

30 
Mean Cross 

Entropy (MXE) 

Measures the 

performance of a 

model where the 

output is a 

probability 

between zero and 

one. 

𝑀𝑋𝐸 = −
1

𝑁
∑ 𝑇𝑟𝑢𝑒 × 𝑙𝑛(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) + (1 − 𝑇𝑟𝑢𝑒)

× 𝑙𝑛(1 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) 

 

(The assumptions are that Predicted ∈ [0, 1] and True ∈ {0, 1}) 

• Minimizing MXE gives the maximum likelihood 

[102]. 

31 

Probability 

Calibration 

(CAL) 

- 

1. Order cases 1-100 by their predicted in the same bin.  

2. Evaluate the percentage of true positives.  

3. Calculate the mean prediction for true positives.  

4. Calculate the mean prediction calibration error for this bin (using 

the absolute value of the difference between the observed frequency 

and the mean).  

5. Repeat steps 1-4 for cases 2-101, 3-102, etc.  

6. CAL is calculated as the mean of these binned calibration errors 

[102]. 

• Lengthy procedure.  

32 

Precision-recall 

break-even 

point 

Point at which the 

precision-recall-

curve intersects 

the bisecting line. 

Precision = Recall 
• Defines the point when precision and recall are 

equal. 

33 
Average 

precision (AP) 

Combines recall 

and precision for 

ranking. 

AP = ∑(𝑅𝑒𝑐𝑎𝑙𝑙𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑛−1)𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛𝑛

𝑛

 
• Describes the weighted mean of precision in each 

threshold with the increase in recall from the 

previous threshold used. 

34 
Balanced 

accuracy [115] 

Calculates the 

average of the 

correctly 

identified 

proportion of 

individual classes.  

Defined as the average of recall obtained on each class. 

• Used in binary and multiclass classification 

problems. 

• Accommodates imbalanced datasets. 

35 
Brier score 

(BS) 

Measures the 

accuracy of 

probabilistic-

based predictions. 

𝐵𝑆 =
1

𝑁
∑(𝑓𝑖 − 𝐴𝑖)

2

𝑁

𝑖=1

 

 

in which fi is the probability that was forecast,  Ai  the actual outcome of 

the event at instance i 

• Measures the mean squared difference between 

the predicted probability and the actual outcome. 

• Takes on a value between zero and 1 (the lower 

the score is, the better the predictions). 

• Composed of refinement loss and calibration 

loss. 

• Appropriate for binary and categorical outcomes. 

• Inappropriate for ordinal variables. 

36 
Cohen’s kappa 

(CK) [116] 

Measures 

interrater 

(agreement) 

reliability. 

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1 − 𝑝𝑒) 

where, po: empirical probability of agreement on the label assigned to 

any sample, pe: expected agreement when both annotators assign labels 

randomly and this is estimated using a per-annotator empirical prior 

over the class labels. 

• Measures inter-annotator agreement. 

• Expresses the level of agreement between two 

annotators [117]. 

• Ranges between -1 and 1. The maximum value 

means complete agreement. 

37 
Hamming loss 

(HL) 

Fraction of the 

wrongly identified 

labels. 

𝐻𝐿 =
1

𝑚
∑ 1𝑃𝑖≠𝐴𝑖

̂

𝑚

𝑖=1

 

• Describes fraction of labels that are incorrectly 

predicted. 

• Optimal value is zero [118]. 

38 
Fitness (T) 

[119] 
- 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑇) = 𝑄(𝑇) + 𝛼 ∗ 𝑅(𝑇) + 𝛽 ∗ 𝐶𝑜𝑠𝑡(𝑇) 

 

where, Q(T): accuracy, R(T): sum of R(Ti) in all multi-tests of 

the T tree, Cost(T): sum of the costs of attributes constituting multi-

tests. The default parameters values are: α=1.0 and β=−0.5, 

𝑅(𝑇𝑖) =
|𝑋𝑖|

|𝑋|
∗ ∑ 𝑟𝑖𝑗

|𝑚𝑡𝑖|−1

𝑗=1

 

where, X: learning set, Xi: instances in i-th node, and |mti|: size of a 

multi-test. 

𝐶𝑜𝑠𝑡(𝑇𝑖) =
|𝑋|

|𝑋𝑖|
∗ 𝐶(𝑎𝑖𝑗) 

where: aij: j-th attribute of the i-th multi-test, C(aij): cost of the aij 

attribute.  

• Used for fitting decision trees. 

• This function needs to be maximized to achieve 

high performance.  

39 F2 score [120] 
Measured as the 

weighted average 

𝐹𝛽 = 1 + 𝛽2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 

where: β = 2. 

• Used in genetic programming and medical fields. 

• Computes a weighted harmonic mean of 

Precision and Recall. 

https://doi.org/10.1007/s44150-021-00015-8
https://doi.org/10.1007/s44150-021-00015-8


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s44150-021-00015-8       

 

Please cite this paper as:  

Naser M.Z., Alavi, A. (2021). “Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences.” Architecture, 

Structures and Construction. https://doi.org/10.1007/s44150-021-00015-8   

13 

 

of precision and 

recall. 
• Learning about the minority class. 

40 
Distance score 

(D score) [120] 
- 

𝐷𝑠𝑐 =
2 × 𝐶1 × 𝐶2

𝐶1 + 𝐶2
 

where:  

𝐶1 =
∑ 𝑠𝑖𝑔(𝑃𝑀𝑎𝑗𝑖)

𝑁𝑚𝑎𝑗

𝑖=0
×|𝑇−𝑠𝑖𝑔(𝑃𝑀𝑎𝑗𝑖)|

𝑁𝑚𝑎𝑗
× 𝑓𝑢𝑛𝑐(1, 𝑃𝑀𝑎𝑗𝑖)  

𝑠𝑖𝑔(𝑥) =
2

1 + 𝑒 − 𝑥
− 1 

𝐶2 =
∑ 𝑠𝑖𝑔(𝑃𝑀𝑖𝑛𝑖)

𝑁𝑚𝑖𝑛
𝑖=0

×|𝑇−𝑠𝑖𝑔(𝑃𝑀𝑖𝑛𝑖)|

𝑁𝑚𝑖𝑛
× 𝑓𝑢𝑛𝑐(1, 𝑃𝑀𝑖𝑛𝑖)  

𝑓𝑢𝑛𝑐(1, 𝑘) = {
1, if𝑘 ≤ 0formajorityclassinstance

1, if𝑘 > 0forminorityclassinstance

0, otherwise

 

 

C1 for majority class and C2 for minority class.  

• Used in genetic programming and medical fields. 

• Distance score (D score) which learns about both 

the classes by giving them equal importance and 

being unbiased. 

• The range of both C1 and C2 is 0 (worst score) to 

1 (best score). 

*The reader is encouraged to review the cited references for full details on specific metrics. 199 
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3. Closing Remarks 200 

Our confidence in the accuracy of predictions obtained from ML algorithms heavily relies on the 201 

availability of actual observations and proper PFEMs. From this point of view, it is unfortunate 202 

that observations relating to the engineering discipline continue to be 1) limited in size, and 2) lack 203 

completeness. The lack of such observations is often related to limitations in conducting full-scale 204 

tests, the need for specialized equipment, and a wide variety of tested samples. For instance, one 205 

can think of how normal strength concrete mixes can significantly vary from one study to another 206 

simply due to variation in raw materials, mix proportions, and casting/curing procedures, etc.  207 

 208 

Combining the above two points with the notion of simply “applying ML” to understand a given 209 

phenomenon (say flexural strength of beams) without a thorough validation is deemed to fail. In 210 

fact, in many instances, researchers noted the validity of a specific ML model by reporting its 211 

performance against traditional PFEMs, only to be later identified that such a model does not 212 

properly represent actual observations – despite having good fitness. This can be avoided by 213 

adopting a rigorous validation procedure [121, 122]. Unfortunately, many of the published studies 214 

in the area of ML application in engineering do not include multi-criteria/additional validation 215 

phases and simply rely on conventional performance metrics such as R or R2 of the derived models. 216 

Furthermore, adopting a set of PFEMs does not negate the occurrence of some common issues, 217 

most notably, overfitting, biasedness etc. As such, an analysis that utilizes ML should also consider 218 

some of the following techniques e.g. use of independent test datasets, varying degrees of cross-219 

validation etc.  220 

 221 

In order to ensure fruitful use of ML, it is our duty to seek proper application of ML. Besides, one 222 

of the major concerns about the ML-based models is their robustness under a wide range of 223 

conditions [123]. A robust ML model should not only provide reasonable PFEMs but should also 224 

be capable of capturing the underlying physical mechanisms that govern the investigated system 225 

[124]. An essential approach to verify the robustness of the ML models is to perform parametric 226 

and sensitivity analyses [123, 125]. These types of analyses ensure that the ML predictions are in 227 

sound agreement with the system’s real behavior and physical processes rather than being merely 228 

a combination of the variables with the best fit on the data. Another item to consider is to develop 229 

a user-friendly phenomenon-specific recommendation system wherein novice users who apply 230 

pre-identified PFEMs are selected to evaluate the performance of a given problem (say using R2 231 

in a regression problem etc.). 232 

 233 

The reader is to remember that the addition of one example to showcase recommended or 234 

important PFEMs negates the purpose of this paper (which is to compile commonly used 235 

performance metrics and list their key characteristics into one document to provide interested 236 

researchers in carrying out a ML analysis with a starting point to select proper performance 237 

metrics). Providing a comparison for all of the reviewed metrics will significantly extend this work 238 

beyond its scope and may not be feasible at the moment. We feel that this is best suited for a series 239 

of more in-depth reviews wherein metrics for classification and regression problems can be 240 
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separately evaluated and reviewed under well-designed problems and a variety of conditions to 241 

ensure fairness and unbiasedness to come in the near future.  242 

 243 

It is our intention to not specifically identify a measure (or a set of measures) due to the wide range 244 

of problems (as well as the quality of data) that a scientist could face. Please note that other 245 

researchers (which are quoted herein) also followed a similar approach.  246 

o “Although some methods clearly perform better or worse than other methods on average, 247 

there is significant variability across the problems and metrics. Even the best models 248 

sometimes perform poorly, and models with poor average performance occasionally perform 249 

exceptionally well.” [126]. 250 

o “It is clearly difficult to convincingly differentiate ML algorithms (and feature reduction 251 

techniques) on the basis of their achievable accuracy, recall and precision.”[127]. 252 

o “Different performance metrics yield different tradeoffs that are appropriate in different 253 

settings. No one metric does it all, and the metric optimized to or used for model selection 254 

does matter.”[102]. 255 

 256 

4. Conclusions  257 

Based on the information presented in this note, the following conclusions can be drawn.  258 

• ML is expected to rise into a key analysis tool in the coming few years; especially 259 

within material scientists and structural engineers. As such, the integration of ML is to 260 

be thorough and proper. Hence, the need for proper validation procedure. 261 

• A variety of performance metrics and error metrics exists for regression and 262 

classification problems. This work recommends the utilization of multi-fitness criteria 263 

(where a series of metrics are checked on one problem) to ensure the validity of ML 264 

models as these metrics may overcome some of the limitations of induvial metrics. 265 

Such metrics can be of independent nature to each other such as, R2, RSME, and 266 

a20−index. 267 

• The performance of the existing metrics and future fitness functions can be further 268 

improved through systematic collaboration between researchers of interdisciplinary 269 

backgrounds. For example, efforts are invited to identify and recommend metrics 270 

suitable for specific problems and datasets.  271 

• Future works should be directed towards documenting and exploring performance 272 

metrics for other types of learnings such as unsupervised learning and reinforcement 273 

learning. This is ongoing research need that is to be addressed in the coming years. 274 

 275 
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