
This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.jobe.2020.101888 

 

Please cite this paper as:  

Naser M.Z., Thai S., Thai, T. (2021). “Evaluating Structural Response of Concrete-Filled Steel Tubular Columns 

through Machine Learning.” Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2020.101888.  

1 

 

Evaluating Structural Response of Concrete-Filled Steel Tubular Columns through 

Machine Learning  

 
M.Z. Naser1,*, Son Thai2,3, Huu-Tai Thai2 

 
1Glenn Department of Civil Engineering, Clemson University, Clemson, SC, 29634, USA 

E-mail: mznaser@clemson.edu, m@mznaser.com, Website: www.mznaser.com 

 
2Department of Infrastructure Engineering, The University of Melbourne, Parkville VIC 3010, Australia 

 
3Faculty of Civil Engineering, HCMC University of Technology, VNU-HCM, 268 Ly Thuong Kiet 

Street, District 10, Ho Chi Minh City, Vietnam  

 

Abstract: Concrete-filled steel tubular (CFST) columns are unique structural members that 

capitalize on the synergy between steel and concrete materials. Due to complexities arising from 

the interaction between steel tube and concrete filling, the analysis and design of CFST columns 

are both intricate and tedious. A closer examination to the provisions of American, European and 

Australian/New Zealand design guidelines shows how these building codes seem to diverge on a 

proper methodology to design CFST columns. This leverages naturally inspired machine learning 

(NIML) algorithms (namely genetic algorithms and gene expression programing) to derive 

compact and one-stepped predictive expressions that can accurately predict the structural response 

of CFST columns. These expressions were developed and validated using the results of 3,103 

available tests carried out on CFST columns over the past few years. The outcome of this work 

shows that the NIML-derived expressions have superior prediction capabilities than those in 

currently used design codes.  

 

Keywords: Machine Learning, Genetic Algorithms; Gene Programming; CFST columns; 

Structural response. 

 

INTRODUCTION 

Concrete-filled steel tubular (CFST) columns are attractive solutions for field applications of 

special demands (e.g., high strength and ductility, excellent energy dissipation and among others 

(Thai et al., 2019; Yuan et al., 2018)). As such, CFST columns are often used in high-rise buildings 

as well as in industrial and large-sized structures. In general, CFST columns can offer structural 

engineers a number of benefits. For example, CFST columns have high strength-to-weight ratio 

when compared to equivalent columns made of steel or reinforced concrete only. Moreover, CFST 

columns do not require sophisticated construction and fabrication as the steel tube act as a 

permanent formwork for concrete casting. This leads to further saving on material and labor costs 

and accelerating construction (Fike and Kodur, 2011). In fact, the confinement generated by the 

steel tube enhances the strength of in-filled concrete, while this filling prevents the inward buckling 

of the steel tube, and thus increasing the overall stability and strength of CFST columns. On a 

separate note, CFST columns present economical solutions against unique loading conditions as 

they often satisfy fire resistance requirements without the need for external proofing (Kodur, 1999). 
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As a result, CFST columns have captured architects’ attention and promoted the integration of 

aesthetically pleasing exposed steelwork.  

 

An extensive testing program was carried out by Knowles and Park (1969) in the late 1960s to 

investigate the response of CFST columns under concentric and eccentric loading. This was 

followed by Liu and Goel (2008) who examined the response of CFST columns under cyclic 

loading in the 1980s. During the 1980-1990s, a number of testing programs ran in parallel, e.g. Lie 

and Stringer (1994) explored the fire resistance, Kilpatrick and Rangan (1999) studied effect of 

high strength in-filled concrete. Then, in early 2000s, Sakino et al. (2004) examined the influence 

of steel tube shape and strength, tube diameter-to-thickness ratio and concrete strength on 114 

CFST columns, and proposed design formulas to estimate their ultimate axial load capacity. The 

outcomes of the above investigations as well as many others were compiled and documented into 

databases. Some of these databases were developed by a number of researchers such as Thai et al. 

(2019), Goode (2008), Leon et al. (2011), Hajjar (2002), Tao et al. (2008), Liew et al. (2016) and 

Denavit (2019a). The aim of compiling these databases is to provide a permanent record of tests 

on various CFST columns to enable development and verification of codal provisions and design 

expressions.  

 

While it is true that there are a number of codal provisions (e.g., American code AISC 360-16 

(2016a), Eurocode 4 (2004), Chinese code GB 50936 (2014), Australian/New Zealand code 

AS/NZS 2327 (2017)) that can be used to design CFST columns, these provisions are only 

applicable for CFST columns with a certain section slenderness ratio and material grade. For 

instance, AISC 360 permits the use of steel tubes with a yield stress up to 525 MPa with concrete 

strength reaching 69 MPa. Eurocode 4 also limits the yield stress of steel tubes and compressive 

strength of concrete filling to 460 MPa and 50 MPa, respectively. The Chinese building code 

further limits the yield stress of steel tubes beyond that in the American and European codes to 

420 MPa, while allows the use of comparatively high strength concrete (up to 67 MPa). It is worth 

noting that the recently released AS/NZS 2327 is the most accommodating between all other codes 

in which it allows higher strength materials (steel with a yield stress up to 690 MPa and concrete 

with compressive strength up to 100 MPa.) to be used in CFST columns. It should be noted that 

the nature of the material strength and section slenderness limitations of modern design codes are 

due to the lack of the experimental data carried out on the specimens beyond the code limits. For 

example, only less than 1% of over 3,100 test specimens recently collected by Thai et al., (2019) 

was carried out on CFST sections with the slenderness ratio beyond the code limit.  

 

From the perspective of this work, the continuous improvement in materials science has led to 

developing high strength and ultra-high performance concrete and high strength steel (concrete 

compressive strength over 90 MPa and steel yield stress over 690 MPa) which possess much 

improved characteristics and properties than those traditionally used in construction (Naser, 

2019a). Thus, their incorporation into civil applications not only enables realizing durable and 

resilient constructions, but also optimally designs structures by allowing the use of more efficient 

(slender) cross sections. Unfortunately, and as discussed above, current design provisions for 
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CFST columns may not be properly extended to allow the use of these high strength materials nor 

CFST columns with slender sections due to limited test data.  

 

The above code limitations can be overcome in this work by adopting artificial intelligence (AI) 

as a tool to analyze and process database collected from actual tests on CFST columns. In order to 

pursue such goal, this paper explores utilizing naturally inspired machine learning (NIML) 

algorithms to comprehend hidden relations between influencing geometric and material factors to 

derive design expressions which are capable of accurately predicting the load-carrying capacity of 

CFST columns made of traditional or modern construction materials. These algorithms were 

trained and validated against a comprehensive database of 3,103 tests covering a wide range of 

material and geometric properties as well as loading configurations. The outcome of this work 

shows the practicality of machine learning tools in predicting the load-carrying capacity of CFST 

columns as well as in paving the way towards developing AI-driven, unified and modern design 

approaches. 

 

DESCRIPTION OF DATABASE 

The successful application of NIML algorithms requires compiling a comprehensive database. As 

such, a literature survey was carried out to identify well-documented tests on CFST columns as 

well as previously developed databases. In pursuit of compiling a large database, the results of 

3,103 tests were collected from 173 studies. This database comprises of columns of various 

configurations (short, slender, circular, square/rectangular, built-up and roll-formed sections) as 

well as columns under concentric and eccentric loading. It is worth noting that the compiled 

database incorporated the data collected by Goode (2008) and Denavit (2019). While these two 

researchers also collected the test data on preloaded columns and columns made of stainless steel 

and, these columns were not of interest to this work and hence were not added to the developed 

database. It should be noted that the complete list of these columns can be found elsewhere (Thai 

et al., 2019). 

 

Various geometric and material properties were collected for each CFST specimen. The geometric 

features include physical dimensions of CFST columns, i.e., effective length (Le), tube thickness 

(t) and tube diameter (D) for circular columns, eccentricities at end supports (et, eb), bending axis 

(X) as well as height (H) and width (B) for square/rectangular columns. The material properties 

include elastic modulus (Es), yield stress (fy) and ultimate stress (fu) of steel as well as compressive 

strength (fc) and modulus (Ec) of in-filled concrete. Table 1 summarizes main attributes of the 

collected database in terms of material and geometric features. It should be noted that the concrete 

compressive strength obtained from the tests was based on both available cylinder and cube 

specimens, and the cube strength will be converted into cylinder strength to be used in design 

equations. 
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Table 1 Key statistics from compiled database. 

Section 

No. 

of 

tests 

Features 
D or H 

(mm) 
t (mm) D/t or H/t Le (mm) fy (MPa) f'c (MPa) 

Circular 

(concentric 

loading) 

1245 

Min 44.45 0.52 7.42 152.35 178.28 9.17 

Max 1020.00 16.54 220.93 5560.00 853.00 193.30 

Average 158.52 4.31 44.28 1060.53 336.35 50.21 

St. 

deviation 
105.42 2.45 32.37 1005.28 90.89 31.57 

Median 127.3 4.00 33.33 662.00 325.00 41.00 

Skewness 3.71 1.58 2.86 1.98 2.18 2.06 

Square/ 

Rectangular 

(concentric 

loading) 

979 

Min 40.00 0.70 10.49 60.00 115.00 8.52 

Max 400.00 12.50 285.71 4500.00 835.00 164.10 

Average 154.19 4.49 41.49 965.31 400.55 54.40 

St. 

deviation 
54.85 2.12 27.41 869.23 169.45 32.79 

Median 150 4.31 34.13 595 340.1 44.0 

Skewness 1.14 1.24 3.12 1.61 1.24 1.22 

Circular 

(eccentric 

loading) 

485 

Min 76.00 0.86 13.69 284.5 185.7 18.4 

Max 600.00 16.00 220.93 4956.00 517.00 184.00 

Average 143.28 4.22 39.75 1758.46 327.66 51.45 

St. 

deviation 
55.83 1.972 27.07 1042.2 58.99 27.300 

Median 133 4.5 33.33 1700 322 42.2 

Skewness 2.87 2.17 4.36 0.81 0.5 2.28 

Square/ 

Rectangular 

(eccentric 

loading) 

394 

Min 76.20 1.90 15.00 360 242 183 

Max 323.00 12.50 82.00 4910 761 18.76 

Average 154.47 4.50 37.71 1801.78 384.36 57.65 

St. 

deviation 
49.80 1.67 16.02 1112.72 117.94 30.74 

Median 150 4.18 33.33 1814.5 340 47.1 

Skewness 1.13 1.96 0.9 0.48 1.51 1.16 

Table 1 shows that the collected columns cover the full spectrum of practical scenarios. For 

instance, the minimum and maximum diameters of circular columns and the width of 

square/rectangular columns are 44.45 mm, 1020.00 mm, 40.00 mm and 400.00 mm, respectively. 

Both circular and square/rectangular columns have thickness varying between 0.52-16.54 mm and 

0.70-12.50 mm, respectively. The average yield strength of steel tubes and compressive strength 

of concrete filling in concentrically loaded circular and square/rectangular columns are 336.35 

MPa and 50.21 MPa, and 400.55 MPa and 54.40 MPa, respectively. However, the ranges of these 

materials are from 9.17 MPa to 193.30 MPa for concrete, and from 115.00 MPa to 853.00 MPa 

for steel. Table 1 also shows that these ranges are slightly lower in the case of eccentrically loaded 

columns. The reader is encouraged to remember that these ranges exceed that adopted in currently 
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used design codes as mentioned in the previous section. As such, this database can come in handy 

in developing NIML algorithms with improved prediction capabilities that could be more inclusive 

than that in codal provisions.  

 

Once the database was properly set-up, a sensitivity/correlation analysis was carried out to identify 

key geometric features and material properties that have significant influence on the strength of 

CFST columns. The outcome of this analysis shows that all identified geometric features (Le, t, D, 

H, B) seem to be high importance to CFST columns. Similarly, both yield stress of steel and 

compressive strength of concrete also have high relevance. It should be noted that influencing 

parameters for eccentrically loaded CFST columns include the magnitude and direction of 

eccentricity. The correlation matrices for the cases of circular and rectangular columns are shown 

in Table 2. These matrices indicate that cross sectional size, thickness of steel tube and material 

properties of CFST columns hold the highest correlation, while the length of columns holds the 

lowest correlation. 
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Table 2 Correlation matrices for influencing parameters. 

Circular CFST columns (concentrically loaded) 

 D fc fy Le t N 
Impor

tance 

D 1.000 -0.003 0.072 0.201 0.478 0.911 0.911 

fc -0.003 1.000 0.030 -0.154 -0.022 0.126 0.146 

fy 0.072 0.030 1.000 0.080 0.238 0.145 0.144 

Le 0.201 -0.154 0.080 1.000 0.216 0.109 0.108 

t 0.478 -0.022 0.238 0.216 1.000 0.549 0.544 

N 0.911 0.126 0.145 0.109 0.549 1.000 - 

Square/Rectangular CFST columns (concentrically loaded) 

 B fc fy H Le t N 
Impor

tance 

B 1.000 -0.011 0.084 0.878 0.001 0.165 0.655 0.655 

fc -0.011 1.000 0.462 
-

0.072 
-0.018 0.376 0.502 0.502 

fy 0.084 0.462 1.000 0.046 0.087 0.445 0.542 0.542 

H 0.878 -0.072 0.046 1.000 0.012 0.136 0.598 0.598 

Le 0.001 -0.018 0.087 0.012 1.000 -0.095 -0.117 0.117 

t 0.165 0.376 0.445 0.136 -0.095 1.000 0.621 0.621 

N 0.655 0.502 0.542 0.598 -0.117 0.621 1.000 - 

Circular CFST columns (eccentrically loaded) 

 D eb et fc fy Le t N 
Impor

tance 

D 1.000 0.598 0.635 0.138 0.239 0.106 0.469 0.785 0.785 

eb 0.598 1.000 0.855 
-

0.105 
0.273 0.093 0.318 0.225 0.225 

et 0.635 0.855 1.000 
-

0.105 
0.320 0.106 0.324 0.217 0.217 

fc 0.138 -0.105 
-

0.105 
1.000 0.248 0.194 0.191 0.486 0.486 

fy 0.239 0.273 0.320 0.248 1.000 0.309 0.226 0.199 0.199 

Le 0.106 0.093 0.106 0.194 0.309 1.000 0.312 0.033 0.033 

t 0.785 0.225 0.217 0.486 0.199 0.033 1.000 0.535 0.535 

N 0.469 0.318 0.324 0.191 0.226 0.312 0.535 1.000 - 

Square/Rectangular CFST columns (eccentrically loaded) 

 B X eb et fc fy H Le t N 
Impor

tance 

B 1.000 -0.083 0.464 0.452 0.006 0.153 0.709 -0.256 0.152 0.551 0.551 

X -0.083 1.000 
-

0.136 

-

0.111 

-

0.095 

-

0.183 

-

0.121 
0.246 -0.082 -0.220 0.220 
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eb 0.464 -0.136 1.000 0.976 
-

0.188 
0.192 0.460 -0.301 0.148 -0.014 0.014 

et 0.452 -0.111 0.976 1.000 
-

0.145 
0.170 0.402 -0.254 0.146 -0.063 0.063 

fc 0.006 -0.095 
-

0.188 

-

0.145 
1.000 0.010 

-

0.143 
0.188 0.200 0.342 0.342 

fy 0.153 -0.183 0.192 0.170 0.010 1.000 0.192 -0.033 0.463 0.466 0.466 

H 0.709 -0.121 0.460 0.402 
-

0.143 
0.192 1.000 -0.299 0.185 0.596 0.596 

Le -0.256 0.246 
-

0.301 

-

0.254 
0.188 

-

0.033 

-

0.299 
1.000 0.216 -0.166 0.596 

t 0.152 -0.082 0.148 0.146 0.200 0.463 0.185 0.216 1.000 0.503 0.503 

N 0.551 -0.220 
-

0.014 

-

0.063 
0.342 0.466 0.596 -0.166 0.503 1.000 - 

N: axial capacity (kN), D: tube diameter (mm) , t: tube thickness (mm) , fy: yield stress of steel tube 

(MPa), fc: compressive strength of concrete (MPa) , B: width of tube (mm), H: height of tube (mm), 

Le: effective length (mm) , X: bending axis (around y-y) = 1.0, (around z-z) = 2.0, et and eb: 

eccentricities at both ends of the column (mm). 

 

Other material properties such as moduli of steel and concrete and ultimate stress of steel were 

deemed to be low importance. For example, the modulus of steel can be taken as 200 GPa, and 

this value is common for all grades of steel used in all columns considered herein. Hence, this 

property will have a minimal effect of the NIML-derived expressions. In a similar manner, the 

modulus of concrete is directly influenced by concrete compressive strength. Since values for 

compressive strength is available for all specimens, the interdependency between the modulus 

property and compressive strength of concrete can be avoided; effectively only incorporating the 

strength property as an influencing factor. A similar approach was also used to negate the need for 

ultimate stress of steel. Thus, to maintain a homogenous database that would lead to optimal 

expressions, these properties are not further discussed herein.  

 

In any case, the NIML algorithms utilized herein are flexible enough to incorporate any parameters, 

e.g. material properties, geometric features, loading conditions. All that is required is to obtain 

data on specific parameters and add them to the developed database. For example, the elastic 

modulus of concrete filling can be estimated through equations adopted in relative design codes 

and then the calculated value can be input as a new parameter to the developed database.  

 

DESCRIPTION OF NIML ALGORITHMS 

This section summarizes both mathematical and computational backgrounds to the NIML 

algorithms used in this study. Both genetic algorithms (GA) and gene expression programing 

(GEP) were used to develop predictive models that can accurately capture the behavior of CFST 

columns. Detailed descriptions of these algorithms are provided herein while details on other 
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algorithms can be found elsewhere (Gharsellaoui et al., 2020; Huang and Burton, 2019; Kaveh et 

al., 2019; M. Z. Naser, 2019a; Sarir et al., 2019; Yucel et al., 2019). 

 

GA is an umbrella that encompasses evolutionary regression techniques which include genetic 

programing (GP) and a newly developed subset GEP. Genetic regression is performed through GA 

or GEP to reach a population of candidate solutions or computer programs. While GA uses space 

search to arrive at actions and values using a fixed complexity, GEP on the other hand, uses an 

explicit structure of smaller computer programs (or codes). This method of regression is 

particularly advantageous in scenarios where statistical methods become complicated and require 

the use of specialized software with high computational capacity, or when the exact physics of a 

problem is well established in detail. Both GA and GEP have been applied into various fields such 

as materials science (Cheu et al., 2004; Naser, 2019), fire engineering (Naser, 2019b, 2019c), 

geotechnical engineering (Alavi et al., 2010), earthquake engineering and design (El Ansary et al., 

2010; Hejazi et al., 2013).   

 

All of the above are evolutionary techniques which were initially developed by Holland (1988), 

Koza (1992) and Ferreira (2001). These algorithms incorporate a supervised learning process that 

mimics the natural selection process (i.e. Darwinian evolution) to express hidden relations between 

a number of factors. These hidden relations are often tied up to a physical phenomenon which is 

the capacity of CFST columns in this study. The main advantage of these approaches over 

traditional soft computing techniques is their capability to produce predictive expressions without 

relying on past formula or relationship. In these techniques, predefined strings of expressions 

and/or computer programs strive to realize mathematical formulation of the phenomenon on hand. 

The key variance between GA and GEP lies in their depiction of the final relation between the 

selected inputs (those listed in Table 2) and output (capacity of CFST columns). While GA creates 

a binary string that lists actions and values (i.e. equation/expression) that represent the solution, 

GEP develops computer codes which is often in a tree structure of actions and values that is 

expressed in functional programming languages such as C++, Matlab and Fortran. In other words, 

GA searches a data space, while GEP searches a program space. Once developed, these programs 

can be run in respective software to solve a phenomenon. For a given problem, GEP can develop 

a macro that can be run using Matlab software, while GA can derive a formula that can be 

substituted into by hand calculation using Excel spreadsheet. Interested readers are encouraged to 

review the following references for comprehensive understanding of GA and GEP (Ferreira, 2001; 

Goldberg and Holland, 1988; Koza, 1992). 

 

In both techniques, a random population of individuals often referred to as “tree” is created to 

initiate the search for possible solutions. As such, a possible solution in GA/GEP is a ranked tree 

consisting of functions and terminals. For instance, a function (F) may contains basic mathematical 

operations (+, −, ×, ), power functions (^, log, exp), conditional and logic functions (<, ≥, AND, 

OR), among others. Conversely, the terminal (T) consists of arguments as well as numerical 

constants and/or variables. Both functions and terminals are first randomly generated and then 

joined together to develop a model in the form of an expression/equation or computer code. Hence, 
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a developed model has a tree-like configuration in which branches can extend from a function and 

end in a terminal.  

 

The NIML analysis starts by assessing the fitness of candidates in the solution population. This 

fitness or ranking of candidate solutions is then applied to evaluate the probability that a particular 

solution will be nominated for further processing (elitism), or undergo one (or series) of genetic 

operations. Such operations transform the candidate model by manipulation via reproduction, 

crossover or mutation (Alavi et al., 2010; Koza, 1992). The reproduction operation assigns a larger 

selection probability to this successful model. On the other hand, the crossover operation facilitates 

replacing genetic material code between this particular model and other candidate models within 

the solution population. Another operation is mutation. In this operation, the algorithm selects a 

random node in the tree expression of an individual solution to be deleted and then to be substituted 

with a randomly generated node. The used values for these operations were 0.2%, 0.1% and 0.04%, 

respectively as suggested by Ferreira (2001). Finally, the fitness for all processed models is 

calculated and terminated once a convergence condition is met. The fitness of a model is defined 

as a value that best reflects how far the model’s predicted results are from that observed in real 

life. A flowchart representing the process of deriving a suitable solution is shown in Figure 1. 

 

 
Figure 1 A flowchart of analysis procedure 

 

DEVELOPMENT AND VALIDATION OF NIML-DERIVED EXPRESSIONS 

The database was randomly arranged to eliminate any biasness arising from a parameter or 

experimental program. The database was split into a model development set (for training and 

validation purposes ~70%) and a testing set (for evaluating performance of applied algorithms 

after completing training ~30%). The database was then analyzed using GA and GEP, and the 

outcome is listed in Table 3. This table shows the accuracy of NIML-derived expressions by means 

of two fitness metrics, i.e., coefficient of determination (R2) and correlation coefficient (R). These 

fitness metrics are close to unity indicating high accuracy of expressions.  

 

Terminate analysis (if fitness criteria is met)Terminate analysis (if fitness criteria is met)

Evaluate fitness of expressionEvaluate fitness of expression

Arrive at possible expressrion trees Arrive at possible expressrion trees 

Create random populationCreate random population

Start of analysisStart of analysis

If not, apply genetic operations 

(mutation, crossover) 
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Table 3 NIML-derived expressions (see appendix for GEP expressions). 

Type Expression 
R2 

(%) 

C
o
n
ce

n
tr

ic
 l

o
ad

in
g

 

Circular 
GA 

𝑁 = 𝑎𝑏𝑠(0.00439𝐷𝑡𝑓𝑦 + 0.000727𝑡𝐷2 +

0.000727𝑓𝑐𝐷2 − 1.38 × 10−5𝐷𝐿𝑒𝑓𝑐 − 3.71 ×

10−7𝐷𝑡𝐿𝑒𝑓𝑦)  

99.1 

GEP See appendix  95.8 

Square/ 

Rectangular 

GA 
𝑁 = 𝐻 + 0.00415𝐵2 + 0.00436𝐵𝑡𝑓𝑦 + 0.0008𝑓𝑐𝐻2 −

1.34 × 10−7𝐿𝑒
2𝑓𝑦 − 3.17 × 10−5𝑓𝑦𝐻2  

97.7 

GEP See appendix  96.1 

E
cc

en
tr

ic
 l

o
ad

in
g
  

Circular 
GA 

𝑁 = 𝑎𝑏𝑠(2.012𝐷 + 0.2609𝑓𝑦 + 𝐷𝑡 + 𝑒𝑡 cos(𝐷) +

0.1403𝐷𝑓𝑐 + 0.001766𝐿𝑒𝑒𝑡 + tan(1.233𝐿𝑒) +
tan(0.1403𝐷𝑓𝑐) − 0.0004983𝐿𝑒 − 2.3𝑒𝑡 − 2.543𝑒𝑏 −
9.581𝑓𝑐 − 19.01𝑡 − 0.04602𝑡𝐿𝑒 − 0.1659𝑓𝑐𝑒𝑡)  

97.6 

GEP See appendix  95.2 

Square/ 

Rectangular 

GA 

𝑁 = 𝑎𝑏𝑠 ( 115.2𝑡 + 3.024𝑋 + 1.356𝐵 + 1.308𝑒𝑡 +

0.1339𝐻 + 0.1775𝐻𝑓𝑐 + 0.01306𝐵𝑓𝑦 +
0.01306𝐵𝑓𝑦

𝑋𝑒𝑡
−

417.5 − 0.0002848𝑓𝑦 − 0.1637𝐿 − 3.961𝑒𝑏 − 12.2𝑓𝑐 −

0.1505𝑓𝑐𝑒𝑡)  

95.4 

GEP See appendix  93.9 

N: axial capacity (kN), D: tube diameter (mm) , t: tube thickness (mm) , fy: yield strength of tube 

(MPa), fc: compressive strength of concrete (MPa) , B: width of tube (mm), H: height of tube (mm), 

Le: effective length (mm) , X: bending axis (around y-y) = 1.0, (around z-z) = 2.0, et and eb: 

eccentricities at both ends of the column (mm). 

 

Figure 2 also shows that the predictions from both GA and GEP algorithms outperform those 

obtained from current design codes (i.e., American code AISC 360-16, Eurocode 4 and 

Australian/New Zealand code AS/NZS 2327). In fact, a closer look into Figure 2 also shows the 

high predictive capability of these expressions in which the majority of data points lie within the 

bounding error of 10% (at which +10% or -10% of the exact measured values lie). This is not the 

case for current design codes which tend to severely underperform CFST columns under eccentric 

loading. It is worth noting that the NIML-derived expressions account a wide range of geometric 

and material properties including those beyond the aforementioned design codes.  
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(a) Circular CFST columns (under concentric loading) 
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(b) Square/rectangular columns (under concentric loading) 
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(c) Circular CFST columns (under eccentric loading) 

  
(d) Square/rectangular columns (under eccentric loading) 

Figure 2 Predictions from newly derived expressions against those obtained from codal provisions  
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Other key statistics obtained from newly derived expressions can be found in Table 4. This table 

lays out statistics from predictions obtained using the NIML-derived expressions as well as codal 

provisions. This table shows how GA and GEP managed to achieve similar or at least very 

comparable performance to all other approaches in terms of average difference between measured 

and predicted strengths for both circular and square/rectangular columns. Predictions from GA and 

GEP also scored third and second in terms of predictions within 5% of that observed in the 

examined tests. Comparing error metrics (MAE: Mean absolute error and RMSE: Root-mean-

square deviation) also shows well performance of GA and GEP models. Overall, NIML-based 

expressions seem to properly capture the behavior of concentrically and eccentrically loaded CFST 

columns with a better overall performance of GA as opposed to GEP. It is worth repeating that the 

predictions from NIML-based expressions come from a step substitution into the formula 

presented in Table 4 instead of carrying out a lengthy and multi-stage procedure.  

 

Table 4 Key statistics from predicted results 

Sectio

n  

No. of 

specime

ns 

Difference: 

measured/predicte

d  

GA GEP AISC 360 
Eurocode 

4 

AS 

2327 

C
ir

cu
la

r 
(u

n
d
er

 c
o
n
ce

n
tr

ic
 l

o
ad

in
g
) 

1245 

Mean 0.98 0.97 1.27 1.09 1.09 

CoV 0.16 0.20 0.44 0.15 0.16 

MAE 
232.4

4 

282.1

6 
493.79 193.66 202.63 

RMSE 
384.7

3 

464.7

0 
1032.68 347.54 380.27 

No. of predictions 

within 5% of the 

true value 

335 268 121 382 398 

No. of predictions 

> 5% of the true 

value 

416 486 1101 698 680 

No. of predictions 

< 5% of the true 

value 

509 506 38 180 182 

k 0.991 0.988 –  – – 

Rm 0.897 0.875 –  – – 

S
q
u
ar

e/
R

ec
ta

n
g
u
la

r 

(u
n
d
er

 c
o
n

ce
n
tr

ic
 

lo
ad

in
g
) 

979 

Mean 1.02 1.06 1.18 1.06 1.07 

CoV 0.13 0.15 0.22 0.20 0.18 

MAE 202.4 
237.5

1 
330.08 270.81 255.10 

RMSE 295.3 
340.2

4 
481.47 442.44 403.15 

No. of predictions 

within 5% of the 

true value 

296 262 169 294 299 
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No. of predictions 

> 5% of the true 

value 

353 368 722 451 475 

No. of predictions 

< 5% of the true 

value 

330 349 88 234 205 

k 1.007 1.004 –  – – 

Rm 0.829 0.800 –  – – 

C
ir

cu
la

r 
(u

n
d
er

 e
cc

en
tr

ic
 l

o
ad

in
g
) 

485 

Mean 1.20 1.09 1.22 1.08 1.16 

CoV 0.17 0.23 0.33 0.23 0.31 

MAE 91.56 
129.3

9 
152.58 92.39 113.22 

RMSE 
126.8

6 

176.6

2 
252.03 173.37 239.40 

No. of predictions 

within 5% of the 

true value 

110 73 86 125 77 

No. of predictions 

> 5% of the true 

value 

176 216 327 255 357 

No. of predictions 

< 5% of the true 

value 

199 196 72 105 51 

k 1.009 1.006 –  – – 

Rm 0.826 0.746 –  – 

– 

 

 

S
q
u
ar

e/
R

ec
ta

n
g
u
la

r 
(u

n
d

er
 e

cc
en

tr
ic

 

lo
ad

in
g
) 

394 

Mean 1.26 0.96 1.22 1.05 1.10 

CoV 0.18 0.20 0.30 0.21 0.24 

MAE 
168.4

2 

167.5

6 
264.82 163.41 188.05 

RMSE 
218.7

6 

250.5

9 
365.76 257.96 292.91 

No. of predictions 

within 5% of the 

true value 

75 90 45 105 87 

No. of predictions 

> 5% of the true 

value 

185 144 289 187 234 

No. of predictions 

< 5% of the true 

value 

134 160 60 102 73 

k 1.005 1.006 –  – – 
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Rm 0.752 0.708 –  – – 

 

Coefficient of variation, CoV =
RMSE

mean
 (Botchkarev, 2019); Mean absolute error, MAE =

∑ |measured𝑖−predicted𝑖|
𝑛

𝑖=1

number of samples
; Root-mean-square, RMSE =

√∑ (measuredi
2−predictedi

2)
n

i=1

number of samples
 

 

In lieu of the above metrics and statistical comparisons, a number of researchers proposed other 

measures to critique the performance of a given model. For example, Smith (1986)  suggested that 

when a model yields a correlation (R) > 0.8, a strong correlation between the predictions and actual 

measurements exists. Table 3 shows that all NIML-based expressions have a correlation exceeding 

96%, and thus satisfying this criterion. Another criterion was also proposed by Frank and 

Todeschini (1994) who recommended data scientists to maintain a ratio of between 3 and 5 

between the number of observations and input parameters. In this work, these ratios were 252, 

163.7, 26.2, and 43.7 for concentrically loaded circular and rectangular CFST columns as well as 

eccentrically loaded circular and rectangular CFST columns, respectively. It is clear that this 

criterion is also satisfied.  

 

In lieu of the above criteria, another criterion was proposed by Golbraikh and Tropsha (2003). This 

criterion emphasizes the need for external verification by suggesting that at least one slope of 

regression lines (k or k′) between the regressions of actual (Ai ) against predicted output (Pi ) 

or Pi  against Ai through the origin, i.e. Ai  = k×Pi and t i = k′ Ai , respectively, passing through the 

origin needs to be close to 1.0 or at least within the range of 0.85 and 1.15. A look into Figure 2 

and Table 4 shows that all NIML-models had a slope in the vicinity of 0.98-1.01, and thus 

satisfying the Golbraikh and Tropsha’s criterion. 

 

For the criterion proposed by Roy and Roy (2008) who developed a confirm indicator (Rm) to 

assess the external predictability of predictive models, a model is said to have a good prediction 

capability when its indicator Rm > 0.5. The indicator (Rm) is calculated as: 

𝑅m = 𝑅2 × (1 − √|𝑅2 − 𝑅𝑜2|)         (1) 

where 

 𝑅𝑜2 = 1 −
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑖

𝑜)2𝑛

𝑖=1

∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−mean of predictions)2𝑛

𝑖=1

, 𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑖
𝑜 = 𝑘 × 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 

 

Table 4 shows that this criterion is also valid for all NIML-based models. The above discussion 

shows how the derived models are properly validated. It can be inferred that the use of the 

developed expressions and tools can provide designers with a quick and one-stepped assessment 

of the capacity of CFST columns. It should be noted that the proposed expressions are valid within 

the limit ranges described in Table 1. Any extensions to these expressions beyond these ranges 

may need to be applied with caution. 

 

A note worthy of mentioning is that the number of predictions that exceeded 5% the value recorded 

in compiled tests shows how codal provisions seem to generally overestimate axial capacity of 
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CFST columns by a large margin. However, the NIML-based expressions seem to avoid that. 

Another note is that NIML attempt to optimize their prediction capabilities as to minimize over-

prediction of capacities, and thus higher number of specimens of < 5% of the true value as 

compared to codal provisions. This shows the need for fine-tuning these algorithms in order to 

better optimize their predictive capability without compromising their accuracy. This will be 

further discussed in Section 5 and will be pursued in future works. 

 

To further illustrate the application of the NIML-derived expressions, one example is carried out 

herein. This example covers a short circular column loaded under concentric loading. In this 

example, the axial capacity of the CFST column is calculated. This column is identical to that 

tested by Zhong and Zhang (1999) (column no. 3). This column has the following geometric and 

material properties. 

 

Effective length (Le) = 310 mm 

Tube thickness (t) = 2.44 mm 

Tube diameter (D) = 104.2 mm 

Yield strength of steel (fy) = 264.9 MPa 

Compressive strength (fc) of concrete = 21.9 MPa 

 

𝑇ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑁) = 𝑎𝑏𝑠(0.00439𝐷𝑡𝑓𝑦 + 0.000727𝑡𝐷2 + 0.000727𝑓𝑐𝐷2 − 1.38 ×

10−5𝐷𝐿𝑒𝑓𝑐 − 3.71 × 10−7𝐷𝑡𝐿𝑒𝑓𝑦)               (2) 

 

𝑇ℎ𝑒 𝑎𝑥𝑖𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑁) = 𝑎𝑏𝑠(0.00439 × 104.2 × 2.44 × 264.9 + 0.000727 × 21.9 ×
104.22 + 0.000727 × 21.9 × 104.22 − 1.38 × 10−5 × 104.2 × 310 × 21.9 − 3.71 × 10−7 ×
104.2 × 2.44 × 310 × 264.9) =
470.11 𝑘𝑁 (𝑤𝑖𝑡ℎ𝑖𝑛 3% 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 450.0 𝑘𝑁)     (3) 

 

The axial capacity of this column using other expressions is listed in Table 5. The reader can be 

deduced that GA gives better prediction of the column capacity. 

 

Table 5 Comparison between predictions from design expressions. 

Expression Predicted value (kN) Within 

GA 470.11 4% 

GEP 399.00 11% 

AISC 360 365.88 19% 

Eurocode 4 481.16 7% 

AS 2327 485.58 8% 

 

CHALLENGES AND FUTURE RESEARCH DIRECTIONS 

In order for machine learning tools to comprehend a given phenomenon, these tools heavily rely 

on the availability of actual observations (preferably obtained from experimental tests). With 3,103 
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specimens used herein, there is still a lack on few fronts: (1) do not contain tests on specimens of 

exact (replicated) features, (2) presents outcome of tests carried out under similar (but not exact) 

conditions (e.g. with slightly different loading rate, testing equipment), (3) may lack aspects with 

regard to presentations on a complete range of geometric and material properties (including age, 

pre-existing loading and environmental exposure), support conditions, among others. While the 

derived expressions seem to naturally overcome the bulk of these challenges, the reader is still 

reminded with the aforementioned observations.  

 

One way to scientifically overcome such challenges is to compile a much larger database than that 

presented herein. This can be undertaken via: (1) specifically designing future experiments, (2) 

collaborative efforts between researchers, (3) launching a repository at which researchers can 

freely access and update on regular basis, and (4) developing analytical and numerical models that 

can accurately capture the structural response of CFST columns. The results of such numerical 

studies, if designed properly, could present an attractive and economical solution over those of 

experimental nature, and hence may facilitate development of improved NIML-based design 

expressions.  

 

In fact, the intention of this work is not to develop a set of AI-based expressions that are continually 

updated by including future tests to be carried out after the publication of this work. We suggest 

updating the proposed expressions in a 5 years cycle which is similar to that adopted in design 

codes.  

 

Finally, it goes without saying that an exclusive feature of machine learning algorithms is that they 

are dynamic in nature and can evolve/improve once new data points are collected. Hence, the 

proposed expressions/codes are expected to undergo a series of improvements and 

reliability/calibrations before being officially inducted into in practical applications. The proposed, 

as well as future expressions are to account for size effects, instability, uncertainty and composite 

action between steel tube and concrete filling. The use of such intelligent techniques will be carried 

out in parallel to traditional methods, as opposed to completely overthrowing testing and 

simulations.     

 

CONCLUSIONS 

The outcome of this analysis shows the merit of utilizing intelligent agents (GA and GEP) in 

analyzing complex structural engineering phenomena that involves a lengthy and tedious 

procedure. This study paves the way for future works and encourages our community to leverage 

modern technologies towards realizing efficient and up-to-date design solutions. Based on the 

information presented in this paper, the following conclusions can be drawn.  

• AI can overcome many of the limitations associated with those adopted in international design 

codes which do not account for specific material strengths or slenderness ratio. Integrating 

GA and GEP can provide structural engineers with novel, modern and optimal solutions. 

• While the extension of design provisions examined in American, European, and Australian 

codes beyond their material and slenderness limits may not lead to consistent and conservative 

predictions, the newly proposed expressions seem overcome this trend. 
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• The performance of AI-derived expressions can be further improved with the availability of 

new data points as well as algorithms. It is expected that such expressions will undergo a 

continuous upgrade process every 5-10 years in a process similar to updating codal provisions.  
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APPENDIX 

Table A.1 Matlab Codes Obtained from GEP Analysis*  

Circular (concentric loading) 

CC.txt  
Square/Rectangular (concentric loading) 

RC.txt  
Circular (eccentric loading) 

CE.txt  
Square/Rectangular (eccentric loading) 

RE.txt  

*Only positive outcomes should be considered. We recommend the use GA as oppose in GEP in these scenarios.  
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