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ABSTRACT 

In order to highlight the potential of Artificial Intelligence (AI) in the field of engineering 

for extreme conditions, this study offers insights into developing an AI-based cognitive framework 

capable of accurately tracing response of concrete structures under elevated temperatures. This 

framework is utilized to derive simple expressions that allow evaluation of thermal and structural 

response of reinforced concrete (RC) beams and columns either; at a specific point in time or 

through tracing time-temperature/deformation history, for up to four hours of fire exposure. The 

developed AI-based framework successfully comprehends the naturally complex behavior of fire-

exposed RC structural members and implicitly takes into account high temperature material 

properties of concrete and steel reinforcement, as well as associated phenomena; i.e. creep 

deformation and fire-induced spalling, and thus does not require input of temperature-dependent 

material properties nor need for distinct simulation/analysis software.  

Keywords: Extreme conditions; Fire; Artificial intelligence; Concrete; Structural members. 

1.0 INTRODUCTION 

Concrete, an inert material, has superior properties which makes it well suited for use in 

extreme environments such as that associated with terrestrial (i.e. nuclear power plants) and 

extraterrestrial (i.e. lunar bases) applications where high temperatures and rapid temperature 

changes take place [1, 2]. Concrete maintains this superior behavior despite the fact that it 

undergoes a series of chemical and physio-mechanical changes that adversely affect its 

composition and nature. In some cases, these changes may alter key characteristics of concrete by 
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developing cracks, inducing creep deformation or spalling (i.e. explosive reduction of cross-

section driven by fire effects) [3]. As a result, predicting thermal and/or structural response of 

concrete structures concrete structural members/systems becomes a challenging task. This has 

been thoroughly documented over the past few decades [4-6].  

Early research on tracing fire response of concrete structures started by examining the 

performance of structural members and assemblies in specially designed furnaces. In these fire 

tests, a concrete element is exposed to a pre-defined “standard” temperature-time curve such as 

that of the ASTM E119 [7] or ISO 834 [8]. In many instances, a tested element is loaded with a 

gravity loading corresponding to a portion of its sectional capacity i.e. 50% of that at ambient 

conditions. The fire-tested element could also be instrumented with thermocouples and 

deformation measuring devices to monitor its thermal and structural response during the fire. Once 

a fire test starts, the performance of the fire-tested element is closely monitored and documented. 

The fire test is terminated once the fire-weakened element exceeds a failure limit state, often when 

temperature at the unexposed side of the element or once deflection of element exceeds a 

predefined limit state. This point in time, when a structural element fails, is referred to as fire 

resistance.  

Results from such fire tests were then compiled into tables, and then used to derive 

correlation equations that can estimate fire resistance of concrete elements (with features and 

conditions similar to those tested earlier). More recently, and due to the growing complexity of 

fire tests and lack of testing facilities, researchers and designers sought other means to evaluate 

fire response of concrete structures. With the advent of technological and computing advancement, 

the use of numerical techniques such as those associated with finite element (FE) analysis, has 
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surged [10]. While such techniques provide a suitable and, in a way, clean/affordable prediction 

of fire response of concrete structures, the lack of proper validation and standardization of solution 

process (i.e. solving algorithms), required inputs (e.g. material properties, heat transfer boundaries 

etc.), as well as need for special software (which often require special licenses, certified expertise 

and demanding computing resources) continue to hinder the application and acceptance of 

numerical techniques [11].  

From the vantage point of this work, most of the above challenges could be concurred 

through assimilating a new form of calculation techniques that leverages Artificial Intelligence 

(AI) to exploit relationships between key response parameters often linked with the fire problem 

or phenomenon. This is stems from the notion that AI has been widely used in a range of civil 

engineering sub-disciplines such as structural health monitoring [12], transportation [13], seismic 

and wind design [14], material sciences [15], yet has not been fully incorporated into structural 

fire engineering and fire safety applications.  

The use of artificial neural networks (ANNs) was also specifically applied towards 

concrete structures primarily to predict sectional capacity and/or structural response. In one study, 

Sanad and Saka [16] investigated the use of ANNs to evaluate ultimate shear strength of 

reinforced-concrete deep beams by examining 111 data points. The outcome of this analysis shows 

that predictions from ANN can outperform that obtained from ACI codal provisions as well as 

Mau-Hsu method. Jadid and Fairbairn [17] also outlined an ANN-based framework to predict 

moment curvature of concrete beams under ambient conditions. This framework was shown to be 

easy to adopt and most importantly of high accuracy. Ahmadi-Nedushan [18] optimized instance-

based learning approaches, compiled with generalized regression neural network and stepwise 
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regressions, to predict the compressive strength of high performance concrete (HPC) given due 

consideration to mix proportion e.g. water to binder ratio, water/fly ash content among others. 

While Hadi [19] presented a comprehensive review on the application of ANNs into concrete 

structures, still, a thorough assessment of open literature shows that despite a handful of studies 

[20-25], the application of AI into structural fire engineering and fire safety continues to be lagging 

and did not reach its full potential yet.  

In its simplest form, Chan et al. [21] developed an ANN able of quantifying magnitude of 

degradation in concrete strength under elevated temperatures (up to 1200°C). This ANN was 

developed using published experimental data points and was then applied to estimate the 

degradation in compressive strength property of concrete made of varying mix proportions and 

exposed to different environmental factors. It is worth noting that the maximum prediction error 

between the developed ANN and the experimental results was less than 15%.  

Few researchers were able of developing AI models capable of predicting other aspects of 

fire response/behavior of concrete structures. For example, McKinney and Ali [22] developed a 

crude set of ANNs in order to qualitatively predict fire-induced spalling in concrete. These ANNs 

were first trained using actual observations from fire tests and then tested to validate their 

prediction capabilities. After 1500 training iterations, predictions obtained from these networks 

showed close agreement with that obtained from fire resistance tests and achieved a 0.5% error 

rate. Similarly, Lazarevska et al. [23] also trained a fuzzy-based neural network (FNN) as to 

evaluate expected time to failure (i.e. fire rating) of RC elements. These researchers also noted the 

suitability of FNNs especially in cases where there is virtually insufficient experimental and/or 

numerically data available on fire response of concrete columns.  
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Naser et al. [20] was also able to predict thermal response in insulated FRP-retrofitted T-

shaped reinforced concrete (RC) beams through a newly developed ANN. In this work, these 

researchers examined the effect of fire intensity, type of insulation material and thickness on 

temperature rise in insulated and strengthened FRP-RC beams. The results from the developed 

ANN were arranged into design charts/aids that can be used to select appropriate insulation 

material and thickness for FRP-RC beams expected to be subjected to standard or realistic (design) 

fires. These design aids could help in practical situations and provide an easy-to-pick insulation 

scheme for fire conditions similar to that to occur in buildings. The same research group was also 

able of utilizing ANNs and genetic algorithms to derive material models for various construction 

materials including high strength, high performance and fiber-reinforced concretes [24, 25]. In a 

separate work, Erdem [26] also trained an ANN to predict fire-caused loss experienced in flexural 

capacity of concrete slabs. The trained ANN can properly account for seven inputs, including 

concrete strength, reinforcement yield strength, effective depth of slab, and fire duration. Erdem 

[26] used 294 data points and reported how the developed ANN is able of achieving high prediction 

capabilities with a correlation coefficient of 99.775% and 99.750% for training and testing, 

respectively.  

 Unlike previously published works, this study seeks the development of a cognitive 

approach that is based on symbolic regression and genetic algorithms as to realize the complex 

thermal and structural behavior of RC structural members exposed to extreme temperatures 

(exceeding 1200°C). This framework has led to deriving simple expressions that are capable of 

evaluating temperature and deformation histories in a concrete member; at a specific point in time, 

or through tracing time-temperature/deformation history and up to four hours of exposure to a 
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standard fire. These expressions are built to account for critical response parameters i.e. geometry 

of RC beams and columns, aggregate type used in concrete mix, steel reinforcement ratio, applied 

load level, thickness of concrete cover, fire exposure duration as well as compressive strength of 

concrete and yield strength of reinforcing steel. Furthermore, these expressions implicitly account 

for high temperature properties of concrete and reinforcing steel, as well as associated fire 

phenomena expected to occur in fire; such as creep and fire-induced spalling, and thus is not of 

need to collect or input of material properties nor acquiring special software for fire analysis.  

In total, seven expressions were derived using the developed cognitive framework; two for 

evaluating thermal response (one for RC beams and one for RC columns) and five for evaluating 

structural response (one for RC beams and four for RC columns with varying aggregate types). 

The validity of the proposed simple expressions was cross-checked against fire-tested RC beams 

and columns collected from published works and open literature. The practical implications of 

integrating AI-based modeling, as well as applicability of extending derived expressions to RC 

beams and columns of various geometric properties, restraint conditions, and concrete strength 

classes is also discussed.  

2.0 BEHAVIOR OF REINFORCED CONCRETE MEMBERS UNDER FIRE 

CONDITIONS 

Before introducing the developed AI-based framework, a concise review of fire behavior 

of RC structural members is beneficial. This section highlights main mechanisms associated with 

thermal and structural behavior of RC beams and columns under fire conditions.  
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When a RC member is exposed to fire conditions, cross-sectional temperature in this 

member slowly rises. This slow rise in temperature arises from the good thermal (insulating) 

properties of concrete. Due to the presence of moisture, low thermal conductivity and high specific 

heat of concrete, a significant amount of thermal energy is required before temperature in concrete 

starts to rise. Thus, a thermal gradient develops in which the temperature at the exposed surface of 

concrete is much higher than that at the level of embedded steel reinforcement or concrete core. 

Still, once the rising temperature reaches the depth (level) at which steel reinforcement is located, 

temperature in these reinforcement starts to rise as well. Since the area of steel reinforcement is 

very small as compared to that of whole cross-section, the temperature in reinforcing steel is 

practically assumed to be similar to that of the surrounding concrete; despite the fact that steel is a 

better conductor, with much higher conductivity and lower specific heat, than concrete.  

With the advent rise in temperature, the mechanical properties (strength and modulus) of 

both concrete and steel reinforcement starts to degrade. This degradation; which is often assumed 

to vary according to specified material models prescribed in fire codes/standards (i.e. ASCE, 

Eurocode 2), triggers losses in sectional capacity (i.e. moment, shear, axial). While such 

temperature-induced degradation is slow, as it corresponds to the slow temperature rise in concrete, 

this degradation could be accelerated by few fire-induced effects such as spalling of concrete. 

Spalling is the loss of concrete chunks and can occur due to a number of factors including water 

vapor build-up, moisture migration, or development of thermal gradients. Spalling is mainly 

associated with high strength concrete and concretes of dense nature. An elaborate discussion on 

spalling is not provided herein for brevity but can be found elsewhere [27].  
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While the mechanism of temperature rise in both RC beams and columns is similar, the 

structural response of these members significantly varies. In the case of the former, a simply 

supported RC beam will try to expand to accommodate thermal expansion facilitated by the rise 

in temperature arising from fire. Since the coefficient of thermal expansion of concrete is small, 

the expansion of the RC beam is often minimal. As the temperature further rises within the cross-

section of the beam, additional layers of concrete, together with reinforcing steel rebars, slowly 

heat up causing the development of a gradient of thermal stresses as well as degradation to the 

strength and modulus properties of concrete and steel (where most losses occurring towards outer 

layers of concrete). With the continuous rise in temperature, combined with stresses developed 

from applied loading (e.g. uniformly distributed load (UDL) as shown in Fig. 1a), fire-induced 

property degradation causes the beam to crack, soften, and deflect. At this point, the beam is 

weakened due to the combined effects of thermal and gravity loads, experiences rapid rise in 

deflection, and becomes prone to failure.  
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(a) Beam 

 

 

 

 

 

 

(b) Column 

Fig. 1 Typical response of RC beams and columns under fire conditions 

On the other hand, when a RC column is exposed to elevated temperatures, the column 

vertically expands as shown in Fig. 1b. Later on, and due to the rise in cross-sectional temperature 

and associated degradation in strength properties, the column starts to weaken. This corresponds 

to a contraction stage in which the axial deformation of the column decreases and shifts from an 

expansion-controlled (noted in the positive side of Fig. 1b) into a contraction-controlled (noted in 

the negative side of Fig. 1b). Eventually, with the increase of exposure duration which causes 
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further losses in mechanical properties of concrete and reinforcing steel, the column buckles or 

crushes.  

In any case, a RC beam or column fails once its sectional capacity (i.e. flexural for beams 

and axial for columns) falls below the level of applied loading (bending/shear for beams and axial 

force in columns).   

3.0 ARTIFICAL INTELLIGENCE – BACKGROUND, RATIONALE, AND MODEL 

DEVELOPMENT  

In contrast to statistical approaches, AI does not involve assumptions to start examining a 

phenomenon. Instead, AI is a specially designed computational technique that hopes to replicate 

human-like thinking/cognition ability to solve complex engineering problems that may not be 

appropriately solved in a timely manner using conventional methods or would require complex 

solvers or environments (software). AI is suitable for engineering scenarios in which there is a 

large amount of inputs (random variables), and there is an unclear (or unestablished) relationship 

between random variable and expected output(s) (results). In many instances, AI utilizes 

evolutionary algorithms that try to learn patterns concealed in random data points by means of 

systematic valuation. Once a pattern is discovered, this pattern turns into the main phase of solving 

the complex system by training and adaptive learning, or even probabilistic discovery of relevant 

patterns. 

An AI-based cognitive framework (model) comprises of multiple layers and processing 

units (referred to as neurons). These neurons are assembled in visible and hidden layers to form a 

paradigm that resembles the human brain in which there is a continuous communication between 
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neurons and layers (see Fig. 3). The input layer, comprises of random variables (predictors), is 

connected to hidden layers capable of establishing linear and/or non-linear models. From the other 

side, the hidden layers are also connected to the output layer that contains the outcome/target 

variable(s) of a given problem. From the perspective of this study, two phenomena are examined. 

The first being thermal response of RC beams and columns, and the second being structural 

response of the aforementioned elements/members under fire conditions.  

 

Fig. 2 Typical structure of an AI-based model 

 

  

In the first (thermal) AI-based model, the geometric properties of RC beams and columns, 

together with fire exposure duration and temperature in concrete at steel reinforcement level are 
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identified as input parameters. These parameters were first collected from published literature and 

then input into the AI-based model for analysis and training purposes. In the second (structural) 

AI-based model, the geometric and material properties of RC beams and columns including steel 

reinforcement ratio, concrete cover, compressive strength of concrete and yield strength of steel; 

as well as applied load level and aggregate type were identified as main parameters for analysis 

and then collected and also input into the AI-based model. Table 1 lists the selected input 

parameters in the case of thermal and structural analysis using the developed AI-based cognitive 

framework. 
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Table 1 Selected input parameters for thr AI-based cognitive framework 
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Thermal response 

Beams ✓ - - - - - ✓ ✓ - ✓ - 

Columns ✓ - - - - ✓ - ✓ ✓ ✓ - 

Structural response 

Beams ✓ ✓ ✓ ✓ ✓ - ✓ - - - ✓ 

Columns ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ 

*Type of aggregate (carbonate vs siliceous) was shown to significantly affect thermal and structural performance of concrete columns much more than that in 

beams [28-48]. As a result, this input parameter was included in the case of RC columns but not in the case of RC beams.  
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The aforementioned parameters (random variables) were selected through close 

examination of: 1) analyzing published fire tests and databases and examining which parameters 

were recognized to be of critical nature and to govern the fire response of RC beams and columns, 

and 2) common availability of such parameters between all reviewed studies. Critical parameters 

were also carefully selected in order to optimize size and complexity of AI-derived expressions, 

while capturing accurate behavior of RC structural members; in order to provide easy and simple-

to-apply expressions that can be coded into spreadsheet and hence do not necessitate hefty 

calculations or special computer programs. The reasoning behind selecting most of previously 

identified critical parameters stems from engineering judgment, observations from fire tests and 

suggestions of previously published  studies [28-47]. 

For example, temperature rise in steel rebars at any given point during fire exposure time 

in a RC beam is said to be a function of duration of fire exposure, t, bottom and side cover to steel 

reinforcement, Cb and Cs, respectively. Other parameters such as compressive strength of concrete 

or ratio of steel reinforcement do not contribute to temperature rise in a RC column exposed to fire 

and hence are neglected from inputting into the thermal-based AI analysis. For a particular RC 

beam, these parameters were first collected. As these parameters are temperature independent, they 

remain constant (fixed) throughout a fire exposure. Then, corresponding values of temperature rise 

at each point in fire exposure time (measured in time intervals of 1-5 min) as observed in the fire 

test, i.e. say 150°C at 60 minutes, 157°C at 65 minutes, were also collected and input into the AI-

based model. This procedure was repeated for all beams selected to train the AI model. Using this 

procedure, thermal-based databases for RC beams and columns were developed.  
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Through above procedure, the developed AI model can relate temperature rise in steel 

rebars to input parameters, t, Cb and Cs and then develops a simple expression that relates 

temperature rise to these three parameters; while implicitly accounting for thermal properties of 

concrete. This eliminates the need to input thermal properties in order to estimate temperature rise 

in a RC beam. In other words, since analyzed beams are made of normal strength concrete, and 

the thermal properties of this type of concrete can be assumed to be similar across different 

concrete mix batches, then the effect of thermal properties can be negated. A similar rationale was 

used in the case of other input parameters for RC columns as well as development of the structural-

based AI models for RC beams and columns. It is worth noting that other factors such as stirrups 

spacing, load configuration and so forth, were maintained in the range of 10-20% of commonly 

reported values*. 

Owing to complexities with fire testing, availability of instrumentation (sensors) and 

equipment, and perhaps most of all, the unstandard styles in documenting results of fire 

experiments, few problems tend to arise. A common issue of particular interest to this work 

revolves around relative humidity of concrete, which is only reported in few tests. Thus, this 

parameter was not picked to be a critical input variable as to maintain unbiasness between other 

inputs. In the case where this variable is to be selected and input to the AI model, then data points 

associated with fire tests in which relative humidity of concrete is not reported were to: 1) be 

                                                 
* Selecting a few parameters as discussed herein is aimed to simplify the complexity arising in understanding the fire 

behavior of RC structures. The validity of selecting such parameters will be revisited in the following section where 

it will be shown that the adopted procedure still manages to capture the full spectrum of thermal and structural response 

of RC structures. It is worth noting that the developed framework has the potential to include ~10-20 independent (or 

dependent) input parameters. All that is needed is to collect information on such parameters.  
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removed from the database which would reduce the overall number of input data points, or 2) be 

given “assumed” values which may risk prediction capability of the AI model. In other instances, 

a variable such as fire-induced spalling is often measured qualitatively (i.e., reported with 

terminology such as “minor” or “major” spalling) as instrumentations and methods to quantitative 

measure fire-induced spalling are still immature. Accounting for such a variable would introduce 

a new dimension to the AI model and this would require special treatment and technical 

manipulation. Few of the steps/solutions that can be applied to adapt such issues are briefly 

discussed towards the end of this study and will be thoroughly discussed in a future study 

specifically tailored towards overcoming these challenges.  

4.0 DEVELOPMENT OF FIRE TEST DATABASES 

The first step towards developing fire test databases to serve as training and testing data 

points is to carry out a comprehensive review of open literature to pinpoint suitable studies/reports 

in which RC beams and columns were tested under standard fire conditions. This section covers 

selected fire tests and further presents insights into the development of AI framework. Full details 

on collected tests, together with material properties and loading conditions in each test, is spared 

herein for brevity but can be found in their respective references. It is worth noting that the 

developed databases contain over 25500 data points and will made be available for use and 

download upon request.  

4.1 Fire Tests carried out on RC beams  

 

In one study, Palmieri et al. [28] carried out an experimental investigation to evaluate fire 

resistance of insulated RC beams retrofitted with near surface mounted (NSM) FRP rebars. Two 
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of these beams, namely B0-F1 and B0-F2, were uninsulated, unstrengthened and were tested under 

the ISO 834 temperature-time curve. As a result, these two beams were deemed suitable for 

analysis in the study. The two beams had a height and width of 300 and 200 mm, respectively. The 

beams had a clear span of 3150 mm and were reinforced with tensile reinforcement consisting of 

2 bars of a diameter of 16 mm. The compressive strength of concrete used in B0-F1 and B0-F2 

was reported at 48 and 42 MPa, respectively. These beams were tested at the floor furnace at the 

WFRGent laboratory. A sample of the developed database for beam B0-F1, together with a RC 

column tested by Raut and Kodur, NSC-1, [29], is shown in Table 2. 

Table 2 Sample database for RC beams and columns 
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85 - - - - - 30 25 - 692 - 
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 0 48 570 0.0067 0.54 - 30 - 200 - 0 

35 48 570 0.0067 0.54 - 30 - 200 - 20 

.. .. .. .. .. .. .. .. .. .. .. 



This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.engappai.2019.03.004   

 

Please cite this paper as:  

Naser M.Z. (2019). “AI-based cognitive framework for evaluating response of concrete structures in extreme 

conditions.” Engineering Applications of Artificial Intelligence. Vol. 81, pp. 437-449. 

(https://doi.org/10.1016/j.engappai.2019.03.004).  

 

18 

 

85 48 570 0.0067 0.54 - 30 - 200 - 40.9 
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0 - - - - - - 50 203 25 - 

9.3 - - - - - - 50 203 43.06 - 

.. .. .. .. .. .. .. .. .. .. .. 

120.4 - - - - - - 50 203 507.2 - 

S
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u
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0 51 450 0.0305 0.4 1 - 50 - - 0 

29.6 51 450 0.0305 0.4 1 - 50 - - 1.51 

.. .. .. .. .. .. .. .. .. .. .. 

140.2 51 450 0.0305 0.4 1 - 50 - - 5.15 

*For values to be filled in.  

 

Another fire-tested RC beam was that reported by Dotreppe and Franssen [30]. This beam 

was also of a rectangular (deep) cross section (600 × 200 mm) and was tested under ISO 834 fire 

exposure. The compressive strength of concrete and yield strength of steel reinforcement were 15 

and 300 MPa, respectively. This beam was reinforced with three steel rebars (in the tension zone), 

each having a diameter of 22 mm. Dwaikat and Kodur [31] also tested number of RC beams made 

of normal and high strength concrete under standard and design fire conditions. Only those tested 

under standard fire conditions are of interest to this study. One beam, named B1, was simply 

supported and tested under ASTM E119 standard fire conditions and this beam was added to the 

developed database. This beam had a length of 3960-mm and was of rectangular cross section of 

406 × 254 mm. The beam was made of concrete with a compressive strength reaching 58.2 MPa 
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and had three 19 mm bars as tensile reinforcement. The yield strength of steel reinforcing bars was 

420 MPa. 

 Rafi et al. [32] casted and tested one RC beam as part of their experimental work. This 

beam, BESS20-1, had a cross section of 200 × 120 mm and was made of a concrete with a 

compressive strength of 30.45 MPa. This beam was reinforced with two 10 mm diameter steel 

rebars with nominal yield strength of 530 MPa. It is worth noting that this beam was relatively 

shorter than some of the selected beam herein as it had a full span of 2000 mm. Choi and Shin [33] 

tested two RC beams made of normal strength concrete; N4 and N5, with cover to tensile 

reinforcement of 40 and 50 mm, respectively. The compressive strength used in these beams was 

21 MPa. The beams were of rectangular shape 250 mm (width) × 400 mm (depth) and 

spanned 4700 mm. The beams were also reinforced with three rebars of 22 mm diameter of yield 

strength of 439 MPa. Two beams tested by Wu et al. [34], Beam I and Beam II, were used in the 

development of the fire test database. These beams had a cross section of 400 × 200 mm and were 

reinforced with three steel rebars, two of which were of 12 mm diameter and the third (middle) 

rebar was of 14 mm diameter. These rebars had a yield strength of 240 MPa. The measured 

compressive strength of concrete used in this study was 24.2 MPa. These beams were relatively 

long, reaching 5.4 m in span. 

 Data from other tests such as those carried out by Zhu et al. [35], Kodur and Yu [36], 

Blontrock et al. [37], Albuquerque et al. [38], Carlos et al. [39], Ellingwood and Lin [40], as well 

as Jiangto et al. [41] was also used as input into the developed AI database. These studies feature 

fire tests carried out on representative RC beams to that used in actual buildings, made of normal 

strength concrete, and subjected to standard fire conditions. These beams had rectangular cross 
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sections of dimensions varying between small 200 × 120 mm and 600 × 200 mm, compressive 

strength of 15-60 MPa, yield strength of 240-593 MPa, tensile steel reinforcement ratio of 0.47-

1.14%, span of 2000-6500 mm, applied loading of 30-60% of ambient capacity, and concrete cover 

of 20-50 mm. It can be seen that those tests cover a wide range of parameters often used in practical 

situations.   

4.2 Fire Tests carried out on RC columns 

 

Similarly, a number of studies examining fire response of RC columns under standard fire 

conditions were also complied to build a database for RC columns to be used in the AI-based 

framework. One notable study was carried out by Lie and Woollerton [42] at the National Research 

Council of Canada (NRCC) in order to update fire resistance ratings for RC columns in the 

National Building Code of Canada (NBCC). In this study, forty-one full size RC columns were 

exposed to fire. These tests varied factors such as shape and cross-sectional area of column, 

percentage of longitudinal reinforcing steel, concrete strength and mixture (type of aggregate), as 

well as load intensity. Overall, square, rectangular and circular concrete columns with varying 

dimensions (i.e. 305 × 305 mm, 203 × 203 mm, 355 mm diameter) were tested. All columns, 

except one, had a concrete cover thickness on 38 mm. On average, the compressive strength of 

concrete was 36 and 39 MPa, for carbonate and siliceous aggregate concretes. Steel reinforcement 

ratio as well as level of applied loading were varied between 2.19-3.97% as well as 0-90%, 

respectively. This is considered by far to be one of the most comprehensive tests carried out on 

fire resistance of normal strength RC columns. 
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In a separate study, Wu and Lie [43] tested seven RC columns, mainly made of siliceous 

aggregate, under the effect of ASTM E119 fire. All of these columns had a concrete compressive 

strength of 25 MPa. Five columns had a square cross-section (305 × 305 mm), and two were of 

rectangular cross-section (305 × 457 mm and 203 × 914 mm). The steel reinforcement ratio and 

applied loading were also varied between 1.39-2.53%, and 910-2218 kN, respectively. It should 

be noted that column No. 7 was subjected to an eccentric loading and as such was not used in the 

developed database.  

Shah and Sharma [44] conducted fire resistance experiments on eight RC columns, six of 

which were made of carbonate-based normal strength concrete (fc = 34 MPa) and two of high 

strength concrete (HSC). Eight steel rebars with 16 mm diameter were used as longitudinal 

reinforcement and were embedded behind 40 mm concrete cover. These rebars had a 

comparatively high yield strength of 569 MPa. Park et al [45] tested a number of large-scale 

columns made of two concrete types, normal strength (fc = 60 MPa) and high strength (fc = 100 

MPa). All columns had dimensions of 500×500×3000 mm. The RC columns were reinforced with 

16 rebars each having a diameter of 25 mm and yield strength of 400 MPa. The column of normal 

strength nature was included in the developed database. In a similar study, Kim et al. [46] tested 

ten columns of which were divided into five groups. Three groups were made of normal strength 

concrete (fc = 40, 60 and 80 MPa) and two groups were made of high strength concrete (fc = 80, 

and 100 MPa). These columns were subjected to 40% load level while being exposed to the ISO 

834 fire exposure simultaneously.  

Other studies were also used to supplement the developed database. These studies include 

fire tests carried out by Raut and Kodur [47] (see Table 2), and Kodur et al. [48]. In all of these 
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tests, the compressive strength of concrete was in the range of 26.5-60 MPa, ratio of steel 

reinforcement varied between 1.22-4.38%, level of applied loading of 0.2-0.95% of axial capacity, 

and aggregate type (carbonate vs. siliceous). Unlike the case of RC beams, there were comparable 

amount of data on above mentioned types of aggregates and as such both types were used at 

individual input parameters.  

5.0 PERFORMANCE AND VALIDATION OF AI-BASED DERIVED EXPRESSIONS  

Upon completion of collecting the above databases, these databases were input into the AI 

environment; developed by Searson [48]. In this software, candidate expressions are derived 

through symbolic regression to arrive at a relation between thermal and structural-based input 

parameters, i.e. fire exposure time (t), compressive strength of concrete (fc) etc. Each relation 

encompasses a number of operators i.e. +, - and/or, mathematical functions (sin, cos..). The 

compiled input parameters were first randomly assembled to remove any specific reference/layout 

in order not to influence the AI-based model. In total, 70% of the data points is used to train the 

cognitive framework while the other 30% was used to validate and test the AI-derived expressions 

[15, 48]. The derived expressions are tested using a fitness function that establishes the difference 

between AI-predicted predicted and measured values in experiments (e.g. temperature in rebars or 

deformation). The derived expressions, as well as their fitness metrics i.e. coefficient of 

determination (R2), correlation coefficient (R), and mean average error (MAE) are listed in Table 

3. In addition, Fig. 3. plots validation (performance) of those expressions against measured data 

points†.  

                                                 
† The reader is encouraged to review two numerical examples provided in the appendix illustrating proper use 

proposed expressions.  
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Table 3 AI derived expressions to evaluate fire response of RC beams and columns 

Case Derived expressions R2 R MAE 
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𝑇 = 0.0169𝑡𝐶𝑏 + +
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+ 𝑡 sin(5.21𝐶𝑏) − 6.43 − 0.0098𝑡2 95.1 97.5 24.6°C 

C
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n
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𝑇 = 0.0922𝑏 + 0.332𝑡 𝐴 + 0.331𝑡 𝐶𝑏 − 11.677𝑡 − 15.125𝐴 − 0.0086𝑡2 94.5 97.2 27.6°C 

S
tr

u
ct

u
ra

l 
r
es

p
o

n
se

 

B
ea

m
s*

 

∆= 36.2 𝑒𝑥𝑝(0.023𝑡) cos(sin(23040 𝑃)) cos (sin(2.28 × 10−8 𝑃)) − 0.206𝐶𝑏 −
9.28sin (𝑓𝑦) − 12.59exp (0.0236𝑡) + 4.5 + 0.105𝑡 + 2.299 × 10−6𝑡𝑓𝑐𝜌 𝑃  

95.6 97.8 4.8 mm 

C
o
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n
s*

*
 

 

∆= 0.085𝑡 + 0.0081𝑡 sinh (sinh (atanh (sin(0.265𝑓𝑐) cos (acosh (
𝑃

𝜌
)))) − 0.039𝑡 𝐴 −

0.000421𝑡2 − 0.0599𝑡 𝐴 cos (acosh (
𝑃

𝜌
)) − 0.0001𝑓𝑦  

87.6 94.2 0.91 mm 

*In some instances, this expression might unexpectedly give relatively high values for initial deflection. In this case, all that is needed is to normalize this deflection 

through subtraction. 
**Additional expressions were also derived for RC columns. These expressions are to be used for RC columns made of: 

1. Carbonate aggregate concrete: ∆= 0.043𝑡 + 0.0063𝑡 tan 𝑓𝑐
2 − 4.701 × 10−8𝑃

𝑡3

𝜌
− 0.0053𝑡 𝑡𝑎𝑛𝑓𝑐

2 cos(𝑡𝑎𝑛 𝑓𝑐
2) − 0.000085𝑓𝑦 (with R2 = 94.03, R = 96.98, 

and MAE = 0.53 mm) 

2. Siliceous aggregate concrete: ∆= 2.499𝑡 𝜌 +
0.0057𝑡𝑓𝑐−0.307𝑡 𝑃

100𝜌2 − 𝑃 asinh (𝑃𝑠𝑖𝑛(−0.325𝑓𝑐) sinh(1.52 × 10−6𝑃𝑡) − 1.52 × 10−6𝑡3 − 0.00009𝑓𝑦 (with R2 = 

89.4, R = 94.5, and MAE =0.89 mm) 
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(a) Temperature in rebars (beams) (b) Validation against fire tests  
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(c) Temperature in rebars (columns) (d) Validation against fire tests 
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(a) Deflection of RC beams (b) Validation against fire tests 
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(c) Axial deformation of RC columns (d) Validation against fire tests 

Fig. 3 Validation of the AI-derived expressions
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It can be seen from above table as well as Fig. 3 that there is an adequate correlation 

between predicted and measured data points where the bulk of the predicted data points fall 

within the ±10 bounds. Both R2 and R exceeds 94% for all expressions, except for that R2 = 

87.6 in the case of the general expression associated with predicting axial deformation of RC 

columns under fire conditions. This is due to the complexity arising from the unique behavior 

of RC columns under fire conditions i.e. expansion in the early stages of fire followed by 

contraction, possible creep, spalling, and sudden failure as discussed in Sec. 2.0. Given the fact 

that this expression traces the temperature-deformation history in terms of few millimeters and 

after a closer examination to Fig. 3 (specifically to Fig. 3d), which shows that derived 

expressions are of good accuracy, it is then believed that these expressions can be conveniently 

used to trace both thermal and structural response of RC beams and columns.  

Still, few attempts were made to improve the prediction ability of this general 

expression. These attempts noted the sensitivity of the AI-model to the type of aggregate used 

in the RC columns. As a result, two additional expressions were specifically derived; one for 

carbonate aggregate concrete (with R2 = 94.03, R = 96.98, and MAE = 0.53 mm), and the other 

is for siliceous aggregate concrete (with R2 = 89.4, R = 94.48, and MAE = 0.89 mm). The two 

expressions have much improved prediction capability and could be used in lieu of the more 

general expression discussed above. By examining Fig. 4, it can be inferred that the AI-derived 

expression for carbonate aggregate concrete seems to better capture the structural response of 

RC columns made of carbonate aggregate under fire conditions, when compared to the 

expression for RC columns of siliceous aggregate. This is a reflection of the fact that minor 

spalling was reported in few RC columns used in the databases (despite being carried out on 

RC columns made of normal strength concrete (of siliceous aggregate)). Still, it can be safe to 

conclude that the developed AI framework and derived expressions can be used, with 
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confidence, to safely predict temperature-time and temperature-deformation history of RC 

beams and columns with similar features to those described towards the end of Secs. 4.1 and 

4.2. 

 

(a) Carbonate aggregate concrete 

 

(b) Siliceous aggregate concrete 
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(c) Comparison between accuracy of derived expressions 

Fig. 4 Validation of AI-derived expressions for carbonate and siliceous aggregate 

concrete 

Through simple mathematical manipulation, the derived models can be arranged to 

arrive at an expected failure time as adopted in number of fire standards, i.e. when a critical 

temperature is reached (e.g. Tcrit = 593°C for steel rebars) or maximum mid-span deflection is 

exceeded (Δ>Δmax = Lc/400d) where Lc and d are span and depth of a RC beam, respectively.  

6.0 EXTENSION OF AI-DERIVED EXPRESSIONS TO NEW SCENARIOS 

Figures 3 and 4 show the validity of the proposed expressions when examined against 
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columns that were not part of the developed databases. At the time of this study, these scenarios 

include different cross-sectional sizes, restraint conditions, and type of concrete class.  

6.1 RC beams  

In one study Carlos et al. [39] demonstrated the outcome of bending-dominant fire tests 

carried out on RC beams strengthened with carbon fibre reinforced polymer (CFRP) laminates. 

As part of this study, one beam made of compressive strength of 30.1 MPa, and with a 

rectangular cross section of 300 × 150 mm was not strengthened but tested under four-point 

bending and fire conditions (ISO 834). This beam, referred to as RC, was reinforced with two 

rebars of 10 mm diameter having a yield strength of 500 MPa. Another study from the same 

research group was conducted by Albuquerque et al. [38]. This study examined the fire 

response of slightly smaller beams (250 × 100 mm) with varying restraint conditions.  

In a separate study, Ahmed and Kodur [49] also tested a similar RC beam, B01, under 

standard ASTM E119 fire conditions. This beam was of 254 mm width and 406 mm depth with 

a span of 3960 mm. The RC beam was reinforced with three no. 6 rebars (of Grade 60) and 

was subjected to a load level of 55%. Jiangtao et al. [41] also tested seventeen CFRP-

strengthened RC beams and similar to Carlos et al. [39], one of these beams, T0, was 

unstrengthened and uninsulated. This beam was exposed to the ISO 834 fire exposure. The 

selected beam was 200 mm in width, 300 mm in depth and 2600 mm in span. The compressive 

of the concrete used in this beam was 43.2 MPa and this beam was reinforced with two rebars 

of 12 mm diameter. The yield strength of the rebars was reported at 414 MPa.  

The validity of the proposed expressions in tracing fire response of these RC beams; 

that were not part of the training stage, is shown in Fig. 5. This figure shows how the derived 

expressions managed to effectively trace both thermal and structural behavior of these beams. 

While the AI-model was developed for RC beams with simply supported boundary conditions, 
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its performance in predicting structural response of RC beams with axial restraints was briefly 

examined. As expected, the derived expression seems to better capture the deformation history 

of simply supported beams but poorly captures the structural response of RC beams with axial 

restraints (and fire-tested by Albuquerque et al. [38]). This shows that the effect of restraint 

conditions is significant and requires to be explicitly included into the AI-model. Still, it is 

worth noting that the AI-derived expressions still manage to accurately capture thermal 

response of beams with varying restraint conditions (see Fig. 5a).  

 
(a) Thermal response 
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(b) Structural response 

Fig. 5 Applicability of derived expressions in tracing fire response of RC beams 

6.2 RC columns  
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expression still manages to capture the thermal response of these two circular columns. In a 

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200

Te
m

p
er

at
u

re
 (
°C

)

Time (min)

Aqeel and Kodur [43] - B01 (measured) Aqeel and Kodur [43] - B01 (predicted)

Carlos et al. [33] - RC (measured) Carlos et al. [33] - RC (predicted)

Jiangtao et al. [35] - T0 (measured) Jiangtao et al. [35] - T0 (predicted)

Albuquerque et al. [32] - ka1_kr0_1 (measured) Albuquerque et al. [32] - ka0_kr0_1 (measured)

Albuquerque et al. [32] (predicted)



This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.engappai.2019.03.004   

 

Please cite this paper as:  

Naser M.Z. (2019). “AI-based cognitive framework for evaluating response of concrete structures in extreme 

conditions.” Engineering Applications of Artificial Intelligence. Vol. 81, pp. 437-449. 

(https://doi.org/10.1016/j.engappai.2019.03.004).  

 

34 

 

similar manner, this expression was also successful in tracing thermal response of two RC 

columns tested by Xu and Wu [50] as part of a unique experimental program aimed at 

evaluating fire resistance of RC columns with L- and T-cross sections. These columns were of 

a relatively larger cross-sections (equivalent to 500 × 500 mm), made of siliceous aggregate 

concrete and were tested under ISO 834 fire scenario.  

 

 
(a) Effect of different cross-sectional shapes 
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(b) Effect of restraint conditions 

 

 
(c) Effect of high strength concrete 

Fig. 6 Evaluation of applicability of AI-derived expressions in predicting thermal and 

structural response of RC columns 
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Lie and Woollerton [42] also tested two RC columns, B1 of series II and B2 of series 

III, with fixed-hinge with free translation restraint conditions and fixed-hinged boundary 

conditions. The two columns were employed to assess the applicability of the derived general 

expression. As can be seen in Fig. 6b, the AI model seems to capture the main elements of 

structural response of the column with fixed-hinged restraint conditions but not the one with 

fixed-hinge with free translation restraint conditions. The additional allowance of translation 

was not properly captured, as expected, as the AI-derived expressions was mainly developed 

using data points from RC columns with fixed-fixed conditions. On a similar note, the derived 

expression was also unable of capturing the structural response of RC columns with unique 

cross-sections as in those tested by Xu and Wu [50] (data plots for these columns are not shown 

in Fig. 6b). 

The applicability of the derived expression in predicting structural fire response of RC 

columns made of high strength concrete (HSC) with a compressive strength exceeding 83 MPa 

was also investigated. Since very few fire tests were carried out on RC columns made of HSC, 

two RC columns, B2 and B8, were selected from a study carried out by Kodur et al. [47]. These 

columns had similar geometric configuration to those tested by Lie and Woollerton [42] and 

were made of concrete with a compressive strength of 126 and 119.7 MPa, respectively. An 

examination of measured and predicted response as plotted in Fig. 6c shows that the AI-derived 

expression manages to better capture the structural response of these columns within the first 

hour of the fire after which predicted response seem to vary. In essence, HSC columns, such 

as the ones tested by Kodur et al. [47], are very vulnerable to fire-induced spalling. The 

occurrence of spalling simply changes fundamental aspects of fire response of RC columns as 
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spalling significantly reduces cross-sectional size and expose internal reinforcement to direct 

temperature rise, both of have adverse effects on fire performance of HSC RC columns.  

The derived expression listed in Table 3 was then slightly modified to account for 

higher compressive strength of concrete in columns made of HSC. The revised expression, 

which implicitly accounts for tendency of HSC to fire-induced spalling, seem to have better 

prediction capability. This expression, which is suitable for carbonate and siliceous aggregate 

concrete, is given as: 

∆= 1.855 + 0.034𝑡 + 0.0309𝑡 sin(−1.07.89𝑓𝑐) + 0.00894𝑡 sin(1.529𝑓𝑐) +

sin (221.67
𝜌 𝑃

𝐴
) − 0.023𝑓𝑐 − 7.91 × 10−7𝑡3 + 0.000093𝑓𝑦    Eq. 1 

 

The statistical metrics of this expression are: R2 = 96.12, R = 98.0, and MAE = 0.51 

mm. The predicted axial deformation using above expression in the case of columns made of 

HSC is plotted in Fig. 6c. This expression is still being calibrated and will be further improved 

upon and discussed in a companion study. 

In general, the degree of precision in predictions obtained from AI-derived expressions 

is higher against RC beams and columns with common features with the specimens used in 

training/developing the AI model. Further discussion on suitability of derived expressions in 

above scenarios as well as additional cases is presented in the following section. 

7.0 PRACTICAL IMPLICATIONS, CHALLENGES, AND FUTURE RESEARCH  

 

This study presents a concept that capitalizes on the fact that artificial intelligence (AI) 

and machine learning techniques seem to be rapidly evolving and this favors utilizing such 

methods into engineering applications. In this optimistic view, one must realize that the 

simplicity of AI-derived or AI-developed approaches does not come easily. As such, some of 

the challenges and limitations of utilizing AI into practical solutions and applications need to 

be highlighted. For a start, the prediction capability of an AI-model largely depends on the 
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number of observed/measured input data points. From the point of view of the study, it is 

without a doubt that available/useful information on fire tests is limited, keeping in mind the 

large margin of variability and the fact that very few tests were carried out with duplicated 

specimens. This has been illustrated in few cases presented in this study, notably those 

associated with RC beams made of HSC, RC beams and columns with varying restraint 

boundary conditions and tendency to fire-induced spalling. In general, having few (or 

limited/useful) data points limits development of properly trained AI-models/expressions with 

accurate prediction capabilities.  

On a similar note, the bulk of the 40+ RC columns tested by Lie and Woollerton [42] 

as well as Kodur et al. [47] were reinforced with steel rebars with a yield strength of 414 and 

400 MPa, respectively. If all of these specimens were to be input into the developed databases, 

then steel grade, as a random variable, may deem to be an insignificant input parameter. This 

is because the AI framework can recognize that most of these specimens share the same steel 

grade and as a result would shy from further examining such a factor (i.e. by normalizing its 

effects and neglecting its contribution to a derived expression – in a similar manner to that of 

temperature-dependent material properties). In order to overcome this issue, only handful of 

specimens were used from the aforementioned experimental programs. This discussion clearly 

infers that having limited experimental works (documented observations) seem to be a key 

challenge that may limit full utilization of AI into structural fire engineering and fire safety 

problems.  

The author hopes that upcoming experimental (as well as numerical) works will lead to 

developing much improved and intelligent cognitive frameworks. Next generation AI-based 

models are expected to accommodate common and advanced construction materials, complex 

geometries, different fire exposures (e.g. travelling/realistic fire), complicated phenomena (e.g. 
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debonding, restraint conditions) etc. Similar to these derived in this study, future AI models 

can also evaluate fire response of structural members at an arbitrary point in time or through 

an iterative (step-by-step) procedure. Such models can come in handy in future infrastructure, 

such as those of cognitive and autonomous abilities [51]. 

8.0 CONCLUSIONS 

This work fosters artificial intelligence as a modern assessment tool into structural fire 

engineering and fire safety applications. This study highlights the development of a cognitive 

framework capable of predicting thermal and structural response of fire-exposed RC beams 

and columns as well as sheds light into some of the limitation and key challenges associated 

with incorporating AI into fire engineering and safety. The following key items could also be 

drawn from the results of this work: 

• There is an urgent demand to cultivate simple and automated assessment methods to 

improve current state of structural fire engineering. Such methods can be developed 

using AI. 

• The derived AI-based expressions, together with cognitive framework used to derive 

these expressions, are able to accurately predict thermal and structural response of RC 

beams and columns under fire conditions. 

• A few challenges continue to limit integrating AI-based approaches to fire problems, 

i.e. limited fire tests, and some of these challenges are expected to be overcame through 

collaborative works and interdisciplinary efforts. 
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11.0 APPENDIX  

Two examples illustrating application of AI-derived expressions to evaluate fire 

response of a typical RC beam and RC column is listed herein.   

11.1 Example - RC beam  

In one study Blontrock et al. [37] tested a beam, Beam 3, under ISO 834 fire exposure. 

This beam was of height of 300 mm, width of 200 mm and a span of 3150 mm. The tensile 

reinforcement consists of 2 bars of 16 mm diameter (ρ = 0.0067). The compressive strength of 

the siliceous-based concrete used in this beam was 59.47 MPa. The concrete cover to steel 

reinforcement was 25 mm. The beam was subjected to a loading equivalent to 46% of its 

ultimate flexural capacity. The input parameters were collected from the experimental study 

and are listed into Table A.1. 

Table A.1 Input parameters as obtained from Blontrock et al. [37] 
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Thermal response - - - - 2 25 25 

Structural response 59.47 591 0.0067 0.46 - 25 - 

Thermal response: 

Temperature rise in steel rebars at any point in time (say 45.5 min) can be evaluate 

using the following expression: 

𝑇 = 0.0169𝑡𝐶𝑏 +
182.64𝑡

𝐶𝑠
+ 𝑡 sin(5.21𝐶𝑏) − 6.43 − 0.0098𝑡2 

Such that: 
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𝑇 = 0.0169 × 45.5 × 25 +
182.64×45.5

25
+ 45.5 × sin(5.21 × 25) − 6.43 − 0.0098 × 45.52 = 280.4 ℃, which 

is within 7.9% of measured value (304.3°C). 

The same expression can be applied in an iterative manner to evaluate temperature rise 

in rebars throughout the whole fire. A comparison between measured and predicted results is 

shown in Fig. A.1a. 
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Fig. A.1 Comparison of thermal and structural response in Beam 3 tested by Blontrock et al. 

[37] 

Structural response: 

The structural response (mid-span deflection) of the same beam can also be evaluated 

at any given temperature (say 53 minutes) using the following expression: 

∆= 36.2 𝑒𝑥𝑝(0.023𝑡) cos(sin(23040 𝑃)) cos (sin(2.28 × 10−8 𝑃)) − 0.206𝐶𝑏 − 9.28sin (𝑓𝑦) −

12.59exp (0.0236𝑡) + 4.5 + 0.105𝑡 + 2.299 × 10−6𝑡𝑓𝑐𝜌 𝑃  

Such that: 

∆= 36.2 𝑒𝑥𝑝(0.023 × 53) cos(sin(23040 × 0.46)) cos (sin(2.28 × 10−8 × 0.46)) − 0.206 × 25 −

9.28sin (591) − 12.59exp (0.0236 × 53) + 4.5 + 0.105 × 53 + 2.299 × 10−6 × 53(59.47×0.0067×0.46) =

25.9 𝑚𝑚, which is within 6% of measured deflection (27.6 mm) 

The same procedure can also be applied in an iterative manner to evaluate rise in mid-

span deflection. A comparison between measured and predicted results in shown in Fig. 10.Ab. 

11.2 Example - RC column  

In a similar manner to example 10.1, thermal and structural response of RC column, 

B2, tested by Wu et al. [34] can also be evaluated. This column was of a square cross section 

(300 × 300 mm) and was made of carbonate aggregate concrete. The concrete cover thickness 

to reinforcing steel was 48 mm. This reinforcement was of Grade 340 MPa and the compressive 

strength of concrete measured at 29 MPa. The input parameters were collected from the 

experimental study and input into Table A.2. 

Table A.2 Input parameters as obtained from Wu et al. [34] 
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Thermal response - - - - 1 - 48 300 

Structural response 29 340 0.0169 0.84 1 - - - 

Thermal response: 

Temperature rise in steel rebars at any point in time (say 140 min) can be evaluate using 

the following AI-derived expression: 

𝑇 = 0.0922𝑏 + 0.332𝑡 𝐴 + 0.331𝑡 𝐶𝑏 − 11.677𝑡 − 15.125𝐴 − 0.0086𝑡2 

thus,  

𝑇 = 0.0922 × 300 + 0.332 × 140 × 1 + 0.331 × 140 × 48 − 11.677 × 140 − 15.125 ×

1 − 0.0086 × 1402 = 480.4℃, which is with 2% of measured temperature (488°C).  

The same procedure can be carried out in an iterative (step-by-step approach) to 

evaluated temperature rise in rebars. A comparison between measured and predicted results in 

shown in Fig. A.2.  
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(a) Thermal response 

 
(b) Structural response 

Fig. A.2 Comparison of thermal and structural response in column B2 tested by Wu et al. 

[34] 

Structural response: 

The structural response (axial deformation) of this column can also be evaluated 

towards the end of the fire experiment (at 125 minutes) using the following expressions: 

General expression: 

∆= 0.085𝑡 + 0.0081𝑡 sinh (sinh (atanh (sin(0.265𝑓𝑐) cos (acosh (
𝑃

𝜌
)))) − 0.039𝑡 𝐴 − 0.000421𝑡2 −

0.0599𝑡 𝐴 cos (acosh (
𝑃

𝜌
)) − 0.0001𝑓𝑦  

∆= 0.085 × 125 + 0.0081 × 125 × sinh (sinh (atanh (sin(0.265 × 29) cos (acosh (
0.84

0.0169
)))) − 0.039 ×

125 × 1 − 0.000421 × 1252 − 0.0599 × 125 × 1 × cos (acosh (
0.84

0.0169
)) − 0.0001 × 340 = −0.13 𝑚𝑚   

Revised expression for carbonate aggregate concrete: 

∆= 0.043𝑡 + 0.0063𝑡 tan 𝑓𝑐
2 − 4.701 × 10−8𝑃

𝑡3

𝜌
− 0.0053𝑡 𝑡𝑎𝑛𝑓𝑐

2 cos(𝑡𝑎𝑛 𝑓𝑐
2) − 0.000085𝑓𝑦  

∆= 0.043 × 125 + 0.0063𝑡 tan 29𝑐
2 − 4.701 × 10−8 × 84 ×

1253

0.0169
− 0.0053 × 125 𝑡𝑎𝑛 ×

1252 cos(𝑡𝑎𝑛 1252) − 0.000085 × 340 = −0.08 𝑚𝑚.  

Predictions from both of these expressions are within 0.82 mm when compared to the 

measured axial deformation of -0.9 mm.  
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