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Abstract 10 

Recent surveys have noted that the majority of bridges continue to serve for a prolonged period of 11 

time (+40 years) that far exceeds its intended operational lifespan. Given our limited resources to 12 

maintain and upkeep bridges, these structures become notoriously vulnerable to extreme events. 13 

Building upon the fact that bridges continue not to be specifically designed to withstand the 14 

adverse effects of fire, this study presents the development of a rapid, automated, and intelligent 15 

(RAI) approach that leverages machine learning to identify vulnerable bridges to fire hazard. This 16 

work also presents details on a comprehensive database comprising actual observations collected 17 

from 135 notable and international bridge fire incidents. This database was developed to train two 18 

machine learning techniques, deep learning and genetic algorithms, to quantify hidden patterns 19 

that govern the propensity of existing/new/historical bridges to undergo fire damage and/or fire-20 

induced collapse via a multi-classification analysis. The proposed RAI approach also has the 21 

capability to pinpoint fire-vulnerable bridge components and to display its level of confidence in 22 

its predictions. As such, our approach can be of aid to bridge engineers and government officials 23 

(who may not be well-versed in fire design) with accuracy reaching 89.6%. This approach is 24 

implemented into a software (App) with optimized architecture and reduced computational 25 

complexity and hence is easily scalable and integratable into a user-friendly framework and 26 
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handheld devices. The outcome of this study shows that the RAI approach can be deployed to 27 

arrive at an instantaneous assessment of fire vulnerable bridges.  28 

Keywords: Bridges; Fire; Machine learning; Classification; Deep learning. 29 

1. Introduction 30 

Bridges are strategic transportation structures that offer commuters with a mean for ground 31 

transportation and facilitate supply chain operations. As such, bridges are expected to withstand 32 

day-to-day activities (i.e., traffic demands, etc.) and environmental conditions (wind, snow, etc.). 33 

Similarly, bridges are also equally expected to endure extreme load conditions as well such as 34 

impact and earthquake. Fortunately, bridge design codes provide guidance and provisions to 35 

enable engineers to properly designing bridges against the aforementioned actions [1,2]. However, 36 

there are still very limited provisions that cover the fire design of bridges [3]. In fact, the only 37 

standard that contains some guidelines to mitigate bridge fires is the National Fire Protection 38 

Association (NFPA) Report 502 [4]. Still, one should note that the NFPA 502 only lists general 39 

and qualitative recommendations that apply to bridges with long spans (greater than 300 m); which 40 

constitute a minute portion of total bridge population. In order to bridge this knowledge gap, a call 41 

for action is being fostered by various researchers [5–8].  42 

Bridge fires have been recognized as a critical problem given the rapid urbanization and the fact 43 

that fires could break out anywhere and anytime due to natural causes (i.e., lightning, wildfires, 44 

etc.) or human interventions (vehicle collision, arson, terrorism, etc.) [9]. Bridge fires are 45 

associated with the burning of hydrocarbon fuels and unlimited ventilation, and hence these fires 46 

are classified with high intensity (e.g., temperatures rapidly reaching 800-1000°C within the first 47 

few minutes). Such fires release a significant amount of thermal energy and pressure, both of which 48 
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can adversely damage the integrity of a bridge infrastructure and develop thermally-induced forces 49 

that can trigger significant damage or collapse [6]. This, when combined with the fact that bridges 50 

lack fire protection measures or firefighting equipment, reflects the destructive nature of bridge 51 

fires [10,11]. Knowing that the majority of bridges are poorly maintained, with many showing 52 

signs of distress (e.g., cracking, exposed reinforcement, etc.) or being repaired with flammable 53 

fiber-reinforced polymers (FRP) systems, further amplifies the adverse effects of fire hazard [12].  54 

While it is true that bridge fires may burn out quickly (whether due to firefighting or burning out 55 

of fuels), still such fires can induce large losses to physical properties of construction materials, 56 

and this may eventually lead to partial or complete collapse [13]. Fortunately, most bridge fires do 57 

not trigger a collapse but instead cause some level of damage. In such incidents, proper 58 

investigation, inspection, and maintenance of the damaged bridge are required to be undertaken 59 

by authorities. During this process, the bridge is either entirely or partially shut down as to serve a 60 

reduced traffic volume, which imposes substantial delays to traffic flow and supply chain 61 

operations [14].  62 

Hence, identifying fire-vulnerable bridges can enable authorities and bridge engineers to take 63 

appropriate actions to help minimize the: (1) vulnerability of such bridges and (2) enhance the 64 

resilience of transportation networks. Given that there are more than 600,000 operational bridges 65 

in the United States infers that identifying fire-vulnerable bridges can both be hectic and time-66 

consuming.  67 

The open literature contains a few works that explored different solutions to identify vulnerable 68 

bridges to earthquake and flooding, but little research has examined the problem of bridge fires 69 

[15–18]. For instance, the authors have developed a fire-based importance factor approach similar 70 
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to that used for wind design in earlier works [19,20]. This importance factor is developed by 71 

assigning weightage factors to reflect upon: (1) the vulnerability of a bridge to fire hazard, (2) 72 

traffic usability of a bridge and (3) presence of any fire mitigation strategies. This importance 73 

factor approach was validated against a number of actual bridge fire incidents and, despite its 74 

iterative procedure, was shown to yield accurate predictions. In a similar manner, Peris-Sayol et 75 

al. [6] carried out a statistical analysis on 154 bridge fires. The outcome of their analysis shows 76 

that wooden bridges, as well as those built with steel I-girders, were shown to be most vulnerable 77 

to fire. As such, similar bridges were recognized to have high vulnerability to fire hazards. Finally, 78 

Gidaris et al. [21] proposed the use of multiple-hazard fragility and restoration models to identify 79 

vulnerable bridges within a transportation network. However, the same researchers also noted the 80 

lack of fragility models that can be applied to examine bridge fires.  81 

This study hypothesizes that identifying fire-vulnerable bridges can be carried out with ease by 82 

leveraging a modern form of analysis that utilizes machine learning. As such, this paper tailors 83 

two machine learning techniques (namely: deep learning and genetic algorithm) to identify 84 

bridges’ vulnerability to fire hazards. These techniques are trained to analyze observations 85 

collected from 135 international bridge fires. The outcome of the presented analysis led to the 86 

development of a rapid, automated, and intelligent (RAI) approach that can be applied to identify 87 

vulnerable bridges to fire hazard, as well as estimate the expected degree of damage an existing, 88 

planned, or historical bridge could endure if exposed to a fire incident. The RAI approach is 89 

developed with an optimized architecture, and reduced computational complexity and hence is 90 

easily scalable and can be deployed to arrive at an instantaneous assessment of fire vulnerable 91 

bridges.  92 
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2. A Look into Recent Bridge Fires  93 

Statistical studies that examine bridge fires were conducted by Wardhaua and Hadipriono [22] and 94 

Scheer [11]. These researchers reported that 3.2% and 4.9% of all bridges could experience some 95 

degree of damage due to fire throughout their service life, respectively. Thus, bridge fires can be 96 

classified under rare events [19,22]. Despite this small probability, Table 1 lists notable bridge 97 

fires that occurred due to varying causes. This table also shows the devastating effect of bridge 98 

fires in terms of structural damage and economic losses.  99 

Table 1 Notable fire incidents in bridges  100 

Bridge 

location 
Year  Cause of fire Bridge type 

Description of 

damage/collapse 

I-85, GA, USA 2017 

Vandalism (burning of 

Polyvinyl chloride (PVC) 

pipes) that were stored 

under the bridge. 

Concrete. 

Major spalling and one 

span collapsed after 30 

min of fire. 

I-75, MI, USA 2015 

Collision of a gasoline 

tanker carrying 9000 

gallons. 

Composite. 
Concrete deck and steel 

girders were damaged. 

I-15, CA, USA 2014 
Blowtorching during 

construction. 
Composite. Bridge collapsed. 

Freeway 60, 

CA, USA 
2011 

Collision of a tanker truck 

carrying 128 m3 of 

gasoline. 

Prestressed 

concrete. 

Concrete girders were 

significantly damaged. 

Zhuoshui 

Fengyu 

Bridge, China 

2013 Unknown. Wood. Bridge collapsed. 

I-75, MI, USA 2009 Collision. Composite. Bridge collapsed. 
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Big Four 

Bridge, USA 
2008 

Electrical short circuit 

within the lighting system. 
Steel. 

Minor damage which 

also resulted in large 

debris on the bridge. 

Bill Williams 

River Bridge, 

AZ, USA 

 

2007 Collision. 
Prestressed 

concrete. 

Concrete girders were 

severely damaged. 

Rio–Antirrio 

bridge, Greece 
2005 Lightning strike. 

Prestressed 

concrete. 

Cable failed after 40 

minutes into fire. 

Wiehltalbrücke 

Bridge, 

Germany 

2004 Collision. Steel. 
Major damages that 

costed €7.2 million. 

I-95, CT, USA 2003 Collision. Composite. Bridge collapsed. 

 101 

Table 1 shows that most bridge fires break out due to spillage of highly flammable fuels or 102 

hydrocarbon chemicals (with low flash point) in the aftermath of the collision of fuel tankers. The 103 

same table also shows that bridge fires can occur due to natural causes (lightning strike), or 104 

manmade accidents (blowtorching, etc.). Thus, despite the common public perception that it is 105 

unlikely for a bridge to collapse as a result of a fire, as well as a low probability of fire break out 106 

in bridges, the fact of the matter is that intense fires can indeed trigger fire-induced collapse. It is 107 

worth noting that the New York state department of transportation reported that nearly three times 108 

more bridges have collapsed due to fire than earthquakes in a national survey covering different 109 

jurisdictions within the United States [23]. This survey emphasizes the importance of developing 110 
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proper measures to mitigate bridge fires. To further illustrate the adverse impact of bridge fires, 111 

two incidents are described herein.  112 

The first bridge fire broke out under the I-85 bridge near Atlanta, GA. The I-85 bridge was initially 113 

built in 1953 with ten prestressed concrete girders resting on reinforced concrete piers. This bridge 114 

was well maintained as it was refurbished in 1985 and scored a high sufficiency rating of 94.6% 115 

in 2015. On March 30, 2007, a fire broke out underneath the bridge due to the ignition of stored 116 

large Polyvinyl chloride (PVC) pipes. The burning of these PVCs has led to rapidly growing 117 

temperatures in the range of 900-1100°C. Thirty minutes into this fire, a 30.3. m long span 118 

collapsed, while adjacent piers and spans underwent significant fire-induced spalling damage. At 119 

the time of the fire, this bridge was estimated to serve 243,000 per day, and the losses arising from 120 

this incident were evaluated at $10 million.  121 

The second bridge fire described here is one that broke out at the Wiehltal Bridge in 2004 in 122 

Germany. The Wiehltal steel bridge measures 705 m in length and 31 m in width. This fire ignited 123 

as a result of a collision between a speeding car and a fuel tanker that was transporting 8700 gallons 124 

of gasoline. This collision has pushed the fuel tanker through the bridge’s guardrail, letting it to 125 

fall from a height of 30 m, thus exploding and killing the driver. As a result of this explosion, 126 

intense heat was generated and reached temperatures of 1200°C [24]. This heat has severely 127 

damaged the unprotected steel bridge and caused it to deform over 60 m. While the bridge did not 128 

collapse, this fire has caused significant damages that required a 20 m × 31 m segment of the steel 129 

bridge to be replaced. The overall damage in the aftermath of this incident was estimated at €32 130 

million, and it took three tears to re-opened the bridge for traffic three years later. This incident is 131 

considered to be one of the most expensive accidents in Germany. 132 
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3. Development of Bridge Fire Database 133 

To effectively adopt machine learning to identify vulnerable bridges to fire hazards, one must 134 

develop a proper database that covers various bridges and fires. Hence, a literature review was first 135 

carried out to document notable bridge fires. During this process, a challenge arises that is related 136 

to identifying key factors (from a fire-vulnerability point of view) as a mean to attain a proper 137 

database that will lead to developing an optimally designed machine learning architecture with 138 

low computing complexity. Thus, the survey prioritized to document key factors that were noted 139 

in recent works, recommendations of departments of transportations (DoTs), and from consultation 140 

with practicing engineers [3,6,7,19,20,25–29]. These recent works have identified a number of key 141 

factors that were then divided into three domains; physical features of bridges, traffic features 142 

served by the bridge, fire features of the incident, as well as the damage level imposed upon the 143 

bridge resulting from fire*. Overall, this survey led to collecting 135 international bridge fires with 144 

nine different features, each of which will further be described below.  145 

3.1 Physical Features   146 

The physical features that are identified to govern the vulnerability of bridges against fire hazard 147 

encompass: structural system and construction materials used in load bearing, span length and 148 

age of the bridge. A look into these features reveals that these are also the same characteristics that 149 

govern the structural performance of a bridge. For instance, typical “structural systems, S” in 150 

bridges can be grouped under cable-type (cable-stayed and suspension), girder-type (box or I-151 

shaped), and arch/truss-like. Cable-type bridges are often designed to span over natural obstacles 152 

 
* While the open literature contains much more bridge fires, the compiled database only opted to include bridges with 

full and reliable documentations on the aforementioned features. 
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or serve as landmarks, and hence these bridges have complicated construction and load pathing 153 

[27]. On the other hand, traditional types of bridges are associated with relatively short spans and 154 

easier design/construction. Figure 1 shows that the developed database contained 15 cable-type 155 

bridges, 81 girder-type bridges, and 39 arch/truss-like bridges. As expected, there is a smaller 156 

number of fires that occurred in cable-type bridges given that there is a smaller number of these 157 

bridges in a given bridge population.  158 
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(a) Structural systems (b) Construction materials (c) Span (listed in vertical axis) – represented in meter 

 

 

 
(d) Age (range shown in brackets) – represented in years (e) Geographic/historical importance (f) Number of lanes 

   
(g) Location of fire break out (h) Fuel type (i) Magnitude of damage 

Fig. 1 Statistics of the developed database 

159 

Box girder
Cable/Suspensi

on
Girder Truss/Arch

Total 17 15 64 39

0

10

20

30

40

50

60

70

Composite
Prestressed

concrete
Reinforced
concrete

Steel Wood

Total 39 14 24 41 17

0

5

10

15

20

25

30

35

40

45

0

100

200

300

400

500

600

700

800

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

Rural Sub-urban Urban

Total 46 44 45

Near Above Under

Total 4 69 62

0

10

20

30

40

50

60

70

80

Gasoline/Diesel Haydrocarbons Other flammables

Total 52 23 60

0

10

20

30

40

50

60

70

Collapse Major No/Minor

Total 26 40 69

0

10

20

30

40

50

60

70

80

https://doi.org/10.1016/j.asoc.2021.107896
https://doi.org/10.1016/j.asoc.2021.107896


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2021.107896       

 

Please cite this paper as:  

Abedi, M., Naser M.Z. (2021). “RAI: Rapid, Autonomous and Intelligent Machine Learning Approach to Identify 

Fire-vulnerable Bridges.” Applied Soft Computing. https://doi.org/10.1016/j.asoc.2021.107896   

11 

 

The aforenoted structural systems are often made from “construction materials, M” such as 160 

concrete, steel, or timber. While these three materials can satisfy design requirements at ambient 161 

conditions, each of these materials may still suffer from certain limitations under fire conditions. 162 

For example, steel and timber structural members are prone to fire damage due to the poor thermal 163 

properties of steel and the combustibility of timber. The same susceptibility may not be as apparent 164 

in concrete bridges (i.e., reinforced or pre-stressed concrete), especially those that utilize novel 165 

additives (steel and/or polypropylene fibers) to mitigate fire-induced spalling [30]. A blend 166 

between steel and concrete bridges results in a composite construction that capitalizes on the 167 

synergy between concrete and steel and hence achieves improved fire performance. Figure 1b 168 

shows that the collected database contains 38 concrete bridges (24 reinforced concrete and 18 pre-169 

stressed concrete bridges), 41 steel bridges, 39 composite bridges, and 17 timber bridges†.  170 

The “span, P” of a typical bridge is mainly governed by the presence of any natural obstructions 171 

(i.e., water bodies), selected structural system and material of construction, as well as expected 172 

traffic demands. Hence, the span of a bridge is directly linked to the bridge's structural capacity 173 

and performance. The average span of all bridges collected as part of this database is 108 m, with 174 

a maximum of 737 m and a minimum of 5 m. The full distribution of spans in all bridges is shown 175 

in Fig. 1c. As can be seen, most of the bridges have spans that are shorter than 100 m, as typical 176 

of most highway bridges. 177 

 
† Some modern bridges may solely use fiber-reinforced polymer (FRP) composites and/or special glasses as load 

bearing elements. Very limited works have examined these bridges and hence such bridges were not included in the 

developed database. 
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Bridges are open structures that are continuously exposed to weathering and environmental 178 

conditions. Hence, such structures experience continuous deterioration, whether arising from 179 

environmental factors (corrosion, humidity, etc.), loading factors (overstressing, fatigue), or 180 

extreme events (earthquakes, hurricanes, etc.). While most DoTs require bridges to be inspected 181 

regularly, the majority of bridges are not upgraded to current standards nor properly upkept due to 182 

the limited resources. To consider such effect, the “age, A” of a bridge is identified as a key 183 

character that falls under the physical features domain. The compiled database has an average age 184 

of 50.6 years (with standard deviation = 36.8 years). The same database also has a maximum and 185 

minimum age between 146 years and 1 year old, respectively. 186 

3.2 Traffic Features  187 

Two main features were found to be related to traffic demands in bridges; “geographical 188 

significance, G” as well as “number of lanes, N”. These features roughly represent the overall 189 

expected traffic flow, closeness of a given bridge to population concentration, and availability of 190 

nearby/alternative main routes. The geographical significance of bridges is grouped under three 191 

classes: rural, sub-urban and urban – following a previous work by the authors [20]. Rural bridges 192 

are those that serve small traffic and can be found in rural areas. Sub-urban bridges can be grouped 193 

under those that present landmarks to a specific region. Finally, urban bridges present bridges with 194 

high historical/national importance (i.e., Brooklyn Bridge, NY). Figure 1e shows that our database 195 

contains a uniform spread of bridges wherein: 46 bridges were classified under the rural category, 196 

and 44 and 45 bridges under sub-urban and urban categories, respectively. The number of lanes 197 

reflects the magnitude of allowed daily traffic and in way, a bridge’s traffic serving capacity. 198 

Figure 1f shows the distribution of bridges’ number of lanes wherein about half contains 1-3 lanes. 199 
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3.3 Fire Features  200 

The magnitude of a bridge fire is governed by the type/size of available fuel and ventilation. While 201 

the latter can be assumed to be similar in all bridge fires, given that bridges are open structures, 202 

the type of fuel can vary from one incident to the other. As such, two features are identified to be 203 

of importance: “type of fuel, T” involved in the fire and “closeness of fire break out, C”  to the 204 

bridge [31]. Three types of fuels were considered; those from vehicles in direct collision with other 205 

vehicles (i.e., gasoline/diesel), or those from fuel tanker/barge crashes (hydrocarbon fuels), and 206 

other types of flammables (i.e., stored materials, PVCs, wildfires, etc.) – see Fig. 1h. For 207 

simplicity, three locations for fire break out were considered herein; near/in the vicinity of the 208 

bridge, above the bridge, and under the bridge. Figure 1g shows that 4, 69 and 62 bridge fires 209 

belong to the aforementioned locations.  210 

The reader should note that while the bridge fires collected in this study may not share a similar 211 

magnitude, still the harsh effects of a fire (whether by degrading material properties or imposing 212 

thermally-induced forces) share a similarity. In fact, such a factor may not be readily available as 213 

the size/intensity of a particular fire is not usually formally documented in a quantitative manner 214 

(i.e., with details on the exact magnitude of burned fuel, maximum temperatures reached, etc.) but 215 

instead is qualitatively described. As such, the magnitude of a bridge fire was not explicitly 216 

accounted for as a key feature. 217 

While the above discussed nine features cover three domains, one can also argue that other features 218 

could also be considered (i.e., bridge rating, average daily traffic, last documented upkeep, etc.). 219 

However, many of such features were not explicitly added to the developed database due to the 220 

absence of evidence, especially in older or international bridges. On a more positive note, the 221 
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developed database can still be extended given that information on new features is provided. The 222 

methodology presented herein is scalable and can include additional dependent, as well as 223 

independent, features as shown in previous works [32–34].  224 

3.4 Damage Magnitude  225 

Contingent upon the fire incident, the magnitude of the damage the bridge experiences and any 226 

possible stress to the surrounding transportation network can vary. On the one hand, if a bridge 227 

does not undergo significant fire damage, then this bridge can be re-opened for traffic immediately. 228 

On the other hand, major damage to a bridge is expected to be repaired. To enable timely repairs, 229 

traffic can be either reduced or detoured. Thus, there are three classes of “damage magnitude, D” 230 

that are to be considered herein; no/minor damage (does not necessitate shut down), significant 231 

damage (necessitates shut down), and collapse.  232 

It should be noted that a criterion to evaluate the goodness of a database was proposed by Frank 233 

and Todeschini [35], who recommended data scientists to maintain a ratio of 3-5 between the 234 

number of observations and input parameters. In this work, this ratio was satisfied.  235 

4. Description of Machine Learning Approach   236 

The development of the proposed RAI machine learning approach and two computing techniques 237 

employed herein: deep learning (DL), and genetic algorithms (GA), are presented in this section.  238 

4.1 General Approach  239 

The proposed approach for identifying vulnerable bridges to fire hazards consists of two steps (see 240 

Fig. 2). First, a database (or several databases) on bridge fires is compiled. This database is then 241 

treated and processed via data structuring to handle outliers, missing data and/or apply feature 242 

transformation operations (i.e., aggregations, feature engineering, etc.). Typically, such operations 243 
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rely on domain knowledge, intuition, and data manipulation and hence can be lengthy and hectic 244 

to perform manually. Hence, feature transformation comes in handy, especially in large datasets 245 

of varying features. Then, suitable machine learning techniques are selected, and then these 246 

techniques are properly developed via a rigorous training and verification procedure. Such a 247 

procedure trains the selected techniques via analyzing actual bridge fires. As such, compiling a 248 

representative database that is uniformly and unbiasedly developed (such as that presented in Sec. 249 

3.0) becomes of great importance. Once the selected techniques are adequately trained and 250 

validated, then these techniques are deployed. This deployment will entail analyzing new bridges 251 

(that were not used in the development stage) to evaluate their vulnerability against fire hazards. 252 

Given the automated nature of the RAI approach, this approach can be easily integrated into bridge 253 

population (i.e., from national (Federal Highway Administration (FHWA)/National Bridge 254 

Inventory (NBI)) or regional (DoT-based) databases) to identify fire-vulnerable bridges with ease. 255 

RAI can also be deployed by design firms to analyze bridges being designed or retrofitted. 256 
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 257 
Fig. 2 A flowchart of the proposed RAI approach 258 

 259 

Once the vulnerable bridges are identified, then these bridges are further examined to pinpoint the 260 

cause(s) of this vulnerability. For example, a bridge could be vulnerable to a fire that would break 261 

out beneath the bridge as opposed to a fire breaking out on top of the bridge. In such a scenario, 262 

measures can be put in place to minimize this vulnerability, i.e., insulate bridge girders, provide 263 

fire-proof shields to piers, install fire deluge systems, etc. In another scenario, say a cable-type 264 

bridge is found to be vulnerable to top bridge fires, then cables can be coated with intumescent 265 
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paints or fire-retardant materials etc. Other strategies could also be implemented, e.g., policy 266 

changes can be put in place to minimize fire risk. Such policies may include: prohibiting storing 267 

of flammable materials in the vicinity of vulnerable bridges, limit the speed of fuel tankers passing 268 

through vulnerable bridges, detour large fuel tankers away from vulnerable bridges etc.  269 

Once any of the above strategies are applied, the vulnerability of the bridge can be re-assessed in 270 

a more fine-tuned manner (via importance factor or finite element simulation, etc.) as described in 271 

previous publications [7,8,10,36,37]. For this purpose, load bearing members (i.e., girders) in a 272 

given bridge can be analyzed under representative thermal and mechanical loading effects to 273 

evaluate their fire resistance. If the fire resistance of girders is deemed inadequate, then such 274 

girders are re-configured by providing fire insulation. The modified bridge is then re-analyzed in 275 

an iterative procedure until an adequate insulation thickness (or any other possible solution for that 276 

matter) that allows the girders to achieve a satisfying fire performance is arrived at.  277 

4.2 Deep Learning (DL) 278 

The DL technique is inspired by the topology of the brain. In this topology, a number of layers are 279 

arranged in parallel (see Fig. 3). The first layer, also referred to as the input/receiver layer, receives 280 

the observations to be analyzed which in this case cover those representing structural, traffic, and 281 

fire features. These features are then processed to flow into subsequent layers. The next layers are 282 

called the hidden layers. The hidden layers contain processing units (neurons) that analyze the 283 

inputted features via specific weights (connections). During this processing procedure, the DL 284 

technique learns relevant patterns of how the input features and outcome of bridge fire converge 285 

and then maps such patterns through transformation operations. The training process continues 286 

until a pre-defined fitness metric(s) (i.e., number of iterations and/or error tolerance) between DL-287 
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based predictions and observations of bridge fires (e.g., magnitude of damage observed from 288 

bridge fire incidents) is reached. 289 

The DL network was developed herein using Keras library in Python [38]. First, we split the 290 

compiled database into two parts (80% of the collected data were used for training purposes, and 291 

the remaining data were used for testing the DL and improve its accuracy). Via a trial-and-error 292 

process, we then used 5 hidden layers with 12, 10, 8, 5, and 3 neurons. In this DL network, the 293 

weight and bias function for inputs are both selected to satisfy the glorot_uniform initializer. This 294 

initializer draws samples from a uniform distribution within a range [-limit, limit]. The range 295 

employed herein is sqrt (6 / (fan_in + fan_out)) where fan_in is the number of input units in the 296 

weight tensor and fan_out is the number of output units in the weight tensor [38]. The activation 297 

functions for hidden layers were relu, exponential, tanh, exponential and softmax, respectively‡. 298 

Further, an optimization function is used to minimize the error. This function is Adam [39]. The 299 

optimization function is used to improve the internal parameters of the model such as weight and 300 

biased values. Adam is an adaptive learning rate method that is considered as a combination of 301 

RMSprop and Stochastic Gradient Descent with momentum. This method uses squared gradients 302 

to scale the learning rate like RMSprop and takes advantage of Stochastic Gradient Descent by 303 

using a moving average of a gradient  [39]. For error or loss function, we define 304 

categorical_crossentropy. It is a softmax activation plus cross-entropy loss since this is a multi-305 

 
‡ Relu is often used in the most neural conventional network or deep learning problems with function and derivative 

are both monotonic. Other functions are also used; Exponential which is exp(x).  tanh which is a hyperbolic tangent 

function. Softmax will calculate the probabilities of each target class over all possible target classes. 

https://doi.org/10.1016/j.asoc.2021.107896
https://doi.org/10.1016/j.asoc.2021.107896


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2021.107896       

 

Please cite this paper as:  

Abedi, M., Naser M.Z. (2021). “RAI: Rapid, Autonomous and Intelligent Machine Learning Approach to Identify 

Fire-vulnerable Bridges.” Applied Soft Computing. https://doi.org/10.1016/j.asoc.2021.107896   

19 

 

class problem. In order to improve accuracy, weight function needs to iterate several times. In this 306 

study, the epochs or iterations for the model is set to 29.   307 

 308 

Fig. 3 Representation of a typical DL network topology  309 

4.3 Genetic Algorithm (GA)  310 

Genetic algorithm is an evolutionary technique that utilizes supervised learning to arrive at 311 

relations (i.e., expressions) that represent a particular phenomenon (which in this case refers to the 312 

outcome of bridge fires). GA derives such relations by mimicking the natural selection process 313 

(survival of the fittest) [40]. GA starts by assigning an arbitrary population of expressions (or 314 

trees). Each tree houses mathematical symbols, functions, and operations – see Fig. 4. The analysis 315 

procedure starts by re-arranging such functions and operations in an attempt to arrive at an 316 

expression with high fitness (i.e., predictive capability). In this pursuit, GA employs refining 317 

operations that are also inspired by the natural selection process (i.e., reproduction, mutation etc.) 318 

to fine-tune a candidate expression. At the end of this analysis procedure, the fittest expression out 319 

of all other expressions is selected. Finally, the fittest tree is converted into “Karva-expression” 320 
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form that is easy to input into a spreadsheet-like program, i.e., Matlab, Python, etc. In this analysis, 321 

the notable works of [41, 42] (which were applied for classification problems and genetic 322 

programming modeling) and [43–45] (which tackled structural engineering problems) were used 323 

to identify suitable and commonly used mathematical, functional and genetic operators. An 324 

examination of such works shows that commonly adopted mathematical operators include 325 

addition, subtraction, multiplication, maximum, minimum, IF, and logical operators (such as and), 326 

and hence these were used herein. In addition, Step, Logistic, Trigonometric functions (i.e., TAN, 327 

COS) were also used as functions. For genetic operators, we used a mutation rate of 0.1, and a 328 

crossover rate of 0.85. in general, we deployed a population size of 1000, and a generation of 1200. 329 

The above was seen in very close to those used in the following references and hence proven 330 

effective herein. Further details on the development of a typical GA can be found elsewhere 331 

[32,41].  332 

 333 

 334 

 335 

 336 
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5. Machine Learning Model Validation and Deployment   341 

Now that the machine learning techniques are developed, these techniques are to be trained and 342 

validated. For this purpose, the database was arbitrarily arranged to minimize biases that might 343 

arise from a particular feature (say, structural system, etc.). After that, the database was used to 344 

train the model via a 10-fold cross-validation method in which the dataset is randomly split up into 345 

test and training subsets, which is further divided into 10 groups. This cross-validation method 346 

allows the model to train and be validated on multiple train-validation splits, thereby resulting in 347 

a high model performance with less overfitting [42]. The model is validated on one of the groups 348 

and trained using the other remaining 9 groups. This process is repeated 10 times until each unique 349 

group has been used as the validation subset. Finally, the model's performance is examined on the 350 

test data not seen by the model during training.  351 

Table 2 shows the results of the model examination by means of the confusion matrix and fitness 352 

metrics for both DL and GA techniques when applied to the whole dataset. In this table, one can 353 

see that the DL model performed well in the Recall metric, which shows the ratio of correct 354 

positive predictions to the total positives examples but struggled in the case of Major damage. The 355 

same model performed well on the precision (which shows the ratio of correct positive predictions 356 

to the total predicted positives) front in identifying No/minor damage class. On the other hand, the 357 

GA model performed in a better sense than the former model by attaining improved and consistent 358 

metrics across all classes. In addition, it is worth noting that the overall accuracy for these 359 

techniques on the whole database is 70% and 89.6%, with a Kappa metric (which measures inter-360 

rater reliability) reaching 0.494 and 0.832, respectively. It is worth noting that a Kappa metric 361 

score within 0.41–0.60, and 0.81–1.00 implies “moderate agreement” and “almost perfect 362 

https://doi.org/10.1016/j.asoc.2021.107896
https://doi.org/10.1016/j.asoc.2021.107896


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2021.107896       

 

Please cite this paper as:  

Abedi, M., Naser M.Z. (2021). “RAI: Rapid, Autonomous and Intelligent Machine Learning Approach to Identify 

Fire-vulnerable Bridges.” Applied Soft Computing. https://doi.org/10.1016/j.asoc.2021.107896   

22 

 

agreement”, respectively, as noted by Landis and Kochz [43]. All of the aforementioned metrics 363 

reveal two observations, 1) both models seem to be of good standing, and 2) the accuracy of the 364 

GA algorithm over the DL technique. Overall, the listed metrics show that the proposed RAI 365 

approach can be used to classify fire damage in bridges with confidence (see Table 3).  366 

Table 2 Confusion matrix of selected algorithms  367 

  No/Minor Major Collapse Precision* (%) 

D
L

 

No/Minor 63 15 5 75.9 

Major 5 18 8 580 

Collapse 2 5 14 66.7 

Recall** (%) 90.0 47.4 52.9  

      

G
A

 

No/Minor 63 2 1 95.5 

Major 6 35 2 81.4 

Collapse 0 3 23 88.5 

Recall (%) 91.30 87.5 88.5  
* 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 and ** 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 where TP (denotes true positives), FP (denotes false positives), and FN (denotes false 368 

negatives).  369 

Table 3 GA-proposed expressions to evaluate expected damage to fire 370 

No. Case Derived expressions
§
 

1. Collapse 

𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒 =  𝑠𝑡𝑒𝑝(69.5 × 𝑀 +  7.6 × 𝑆 +  𝑖𝑓(5.3 +  1.5 × 𝑀 × 𝐶 −  0.0062 × 𝑃 −
 2.3 × 𝑀 −  3.07 × 𝐶, 𝑡𝑎𝑛(218.24 +  𝑖𝑓(0.39 × 𝑁 −  1.49, 0.39 × 𝑁 −  1.49, 0.85 × 𝑀 −
 3.31)), 155.59 × 𝑚𝑎𝑥(1.08 × 𝑇 −  2.19, 1.79 × 𝐶 −  2.73))  −  146.45 −  0.103 × 𝐴 −
 1.12 × 𝑁 −  1.98 × 𝑃 −  3.04 × 𝑇 −  6.49 × 𝐺 −  6.8 × 𝐶)  

2. Major 

𝑀𝐽 =  𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(327.80 +  𝑖𝑓(0.39 × 𝑁 −  1.49, 27.30 × 𝑐𝑜𝑠(2.74 +  1.21 × 𝐺 −
 3.08 × 𝑃), 40.88 × 𝑚𝑖𝑛(1.21 × 𝐺 −  2.42, 0.398 × 𝑁 × 𝑡𝑎𝑛(27.30 × 𝑐𝑜𝑠(2.74 +
 1.21 × 𝐺 −  3.08 × 𝑃))  −  1.49 × 𝑡𝑎𝑛(27.30 × 𝑐𝑜𝑠(2.74 +  1.21 × 𝐺 −  3.08 × 𝑃)))  +
 30 × 𝑚𝑖𝑛(0.85 × 𝑀 −  2.71, 𝑚𝑖𝑛(𝑡𝑎𝑛(0.39 × 𝑁 +  𝑐𝑜𝑠(2.74 +  1.21 × 𝐺 −  3.08 × 𝑃)  −
 1.49), 1005.52 × 𝑐𝑜𝑠(1005.52 × 𝑡𝑎𝑛(0.39 × 𝑁 +  𝑐𝑜𝑠(2.74 +  1.21 × 𝐺 −  3.08 × 𝑃)  −
 1.49))))  −  10.88 × 𝑁 × 𝑚𝑖𝑛(1.21 × 𝐺 −  2.42, 0.39 × 𝑁 × 𝑡𝑎𝑛(27.30 × 𝑐𝑜𝑠(2.74 +
 1.21 × 𝐺 −  3.08 × 𝑃))  −  1.49 × 𝑡𝑎𝑛(27.30 × 𝑐𝑜𝑠(2.74 +  1.21 × 𝐺 −  3.08 × 𝑃))))  −
 0.21 × 𝑃 −  0.31 × 𝐴 −  6.71 × 𝑁 −  18.15 × 𝐹 −  18.25 × 𝑀 −  20.52 × 𝐶 −
 21.42 × 𝐺 −  32.1 × 𝑆)  

 
§All features were assigned an arbitrary numeric value such that: 

• Structural systems: cable-stayed/suspension (1.0), truss/arch (2.0), box girders (3.0), and I-girders (4.0).  

• Construction materials: prestressed concrete (1.0), reinforced concrete (2.0), composite members (3.0), steel (4.0) 

and timber (5.0). 

• Geographic significance: rural (1.0), sub-urban (2.0) and urban (3.0).  

• Closeness of fire break out to bridge: top of bridge (1.0), under bridge (2.0), and in the vicinity of bridge (3.0). 

• Fuel type: gasoline/diesel (1.0), hydrocarbons (2.0), and other flammables/storage (3.0). 
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3. No/Minor 

𝑁𝑜/𝑀𝑁 =  𝑠𝑡𝑒𝑝(17.57 × 𝑀 +  3.03 × 𝑆 +  𝑡𝑎𝑛(𝑖𝑓(0.006 × 𝑃 −  0.67, −1.53, 𝑖𝑓(1.37 ×
𝑎𝑛𝑑(0.31 −  0.0062 × 𝑃, 1.8 × 𝐶 −  2.73)  −  0.36 −  0.027 × 𝐴 × 𝑎𝑛𝑑(0.31 −
 0.006 × 𝑃, 1.79 × 𝐶 −  2.73), 1.79 × 𝐶 +  0.91 × 𝑆 +  0.0028 × 𝑃 −  5.74, 𝑖𝑓(0.39 × 𝑁 −
 1.49, −1.52, 𝑖𝑓(1.08 −  0.027 × 𝐴, 1.79 × 𝐶 +  0.0061 × 𝑃 −  3.39, −1.525)))))  −
 39.98 −  0.024 × 𝑃 −  0.047 × 𝐴 −  0.19 × 𝑁 −  0.53 × 𝑇 −  3.12 × 𝐶 −  6.54 × 𝐺)  

 371 

Since GA was found to have a superior predictivity, a sensitivity analysis was carried out on the 372 

proposed GA-derived expressions. In this analysis, the relative impact of each feature within each 373 

expression on the overall response to a bridge fire is examined and listed in Table 4. In this table, 374 

the % Positive refers to the likelihood that increasing a specific feature leads to an increase to the 375 

outcome (i.e., if % Positive = 75%, then 75% of the time an increase in a specific feature would 376 

lead to an increase in the outcome). The positive magnitude quantifies the amount of positive 377 

increase a specific feature can add to the outcome of the expression. Both, % Negative and negative 378 

magnitude are equal opposites to the above. A look into Table 4 shows that the main three features 379 

with the highest sensitivity (i.e., impact) are the span (P), age (A), and the number of lanes (N).  380 

Table 4 Sensitivity analysis on the proposed expressions 381 

Exp. Feature Sensitivity % Positive 
Positive 

Magnitude 
% Negative 

Negative 

Magnitude 

N
o
/M

in
o
r 

d
am

ag
e 

P 1.84 100% 1.84 0% 0 

A 0.61 74% 0.61 26% 0.17 

N 0.44 60% 0.49 40% 0.35 

C 0.35 100% 0.35 0% 0 

S 0.32 100% 0.32 0% 0 

M 0.27 100% 0.27 0% 0 

G 0.16 100% 0.16 0% 0 

T 0.16 100% 0.16 0% 0 

M
aj

o
r 

d
am

ag
e 

P 44.2 45% 52.9 55% 37.21 

N 0.62 20% 1.52 80% 0.39 

S 0.40 0% 0 100% 0.40 

M 0.31 0% 0 100% 0.30 

T 0.24 0% 0 100% 0.24 

C 0.22 0% 0 100% 0.22 

A 0.21 0% 0 100% 0.21 
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G 0.20 0% 0 100% 0.20 

C
o
ll

ap
se

 

P 2.51 28% 0.18 72% 2.5 

M 0.69 100% 0.67 0% 0 

A 0.38 0% 0 100% 0.38 

C 0.18 50% 0.13 50% 0.22 

S 0.16 100% 0.16 0% 0 

G 0.16 0% 0 100% 0.156 

N 0.09 0% 0 100% 0.09 

T 0.01 0% 0 100% 0.015 

 382 

A deeper look into the above three features shows interesting observations. For example, it is very 383 

likely for a bridge to experience a high degree of damage (or to possibly collapse) if such a bridge 384 

is made of steel or timber (e.g., an increase in M from 1 → 5 has a 75% likelihood of amplifying 385 

the outcome and leading to collapse). An equally exciting observation can also be seen in the case 386 

of P and N, wherein an increase in these features (i.e., bridges with longer spans and/or a higher 387 

number of lanes) is expected to minimize the possibility of collapse. While the latter may seem 388 

counterintuitive, one should note that: (1) larger bridges are much more resilient and built to 389 

achieve higher levels of performance, and (2) very few large bridges ever collapse due to fire [11].  390 

The above approach can now be deployed into a bridge master database (say from FHWA etc.) to 391 

identify vulnerable bridges. While the proposed approach was developed via complex machine 392 

learning analysis, still this framework was successfully employed into a simple Excel-like 393 

spreadsheet as well as software (App) that could be operated using a PC, tablet (i.e., iPad), or an 394 

iPhone (see Fig. 5). As such, users of RAI approach do not need to have a background in coding 395 

nor to be in need of a specialized software (i.e., Matlab) or device to evaluate the vulnerability of 396 

bridges to fires.  397 
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 398 
(a) Excel application in a typical Desktop computer 399 

 400 
(b) IPad tablet 401 
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 402 
(c) Demo App (the model also incorporates confidence intervals as per Brownlee [44] 403 

suggestions to showcase the model predictive decision across all classes) 404 

Fig. 5 Deployment of RAI approach into a spreadsheet and software (App) 405 

 406 

 The user may also opt to start the vulnerability analysis using hand-calculation. In this case, it 407 

would be optimal to start by applying the first expression to check whether the bridge will collapse 408 

or not. If the first expression returns a value of unity, then the bridge is expected to collapse, and 409 

if not, then the second and third expressions will be applied to estimate the magnitude of the 410 

damage the bridge will experience**. In any case, the user must note that the derived expressions 411 

may not be genuinely aesthetic nor compact, and this is attributed to the complex nature of bridge 412 

 
** It is unlikely that the above expressions will agree on a specific outcome (i.e., all expressions yield an outcome of 

unity) for the same bridge. In any case, the designer might option to select the worst-case scenario outcome and/or try 

different approach such as bridge fire importance factor (which is based on weightage factors) [19] or finite element 

simulations [7]. 
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fires these expressions reflect. In other words, mathematically representing the outcome of bridge 413 

fires is hectic and requires a highly nonlinear form of expressions. 414 

To further validate the proposed machine learning approach and software, the following three case 415 

studies are carried out herein.  416 

Brooklyn Bridge 417 

The first case study covers a fire that broke out at the Brooklyn Bridge, NY. This fire resulted from 418 

a fuel tanker collision with another vehicle on top of the bridge. Given the following features listed 419 

below, it is clear that this bridge could undergo a minor degree of damage due to such fire. It 420 

should be noted that the Brooklyn Bridge has undergone a number of similar fires over the past 421 

few years [45,46]. The outcome of these fires has been documented to be of insignificant/minor 422 

magnitude.  423 

Bridge features: 424 

Physical features:   425 

 Structural systems, S → Suspension system = 1 426 

Construction materials, M → Steel = 4 427 

Span, P → 486 m 428 

Age, A → 143 years 429 

Traffic features:   430 

Geographical significance, G → Urban = 3 431 

Number of lanes, N → 6 lanes 432 

Fire features: 433 

Closeness of fire break out, C → Above bridge = 1 434 

https://doi.org/10.1016/j.asoc.2021.107896
https://doi.org/10.1016/j.asoc.2021.107896


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2021.107896       

 

Please cite this paper as:  

Abedi, M., Naser M.Z. (2021). “RAI: Rapid, Autonomous and Intelligent Machine Learning Approach to Identify 

Fire-vulnerable Bridges.” Applied Soft Computing. https://doi.org/10.1016/j.asoc.2021.107896   

28 

 

Type of fuel, T → Hydrocarbon fuels = 2 435 

Step 2: Deploy machine learning techniques: 436 

Based on DL tool  437 

Predicts the bridge will experience no/minor damage. 438 

Based on GA-proposed expressions: 439 

𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒 =  𝑠𝑡𝑒𝑝(69.5 × 4 +  7.6 × 1 +  𝑖𝑓(5.3 +  1.5 × 4 × 1 −  0.0062 × 486 −  2.3 × 4 −  3.07 ×440 

1, 𝑡𝑎𝑛(218.24 +  𝑖𝑓(0.39 × 6 −  1.49, 0.39 × 6 −  1.49, 0.85 × 4 −  3.31)), 155.59 × 𝑚𝑎𝑥(1.08 × 2 −441 

 2.19, 1.79 × 1 −  2.73))  −  146.45 −  0.103 × 143 −  1.12 × 6 −  1.98 × 486  −  3.04 × 2 −  6.49 × 3 −442 

 6.8 × 𝐶) = 0.0 (the bridge is not expected to collapse → check for expressions 2 and 3).   443 

𝑁𝑜/𝑀𝑁 =  𝑠𝑡𝑒𝑝(17.57 × 4 +  3.03 × 1 +  𝑡𝑎𝑛(𝑖𝑓(0.006 × 486 −  0.67, −1.53, 𝑖𝑓(1.37 × 𝑎𝑛𝑑(0.31 −444 

 0.0062 × 486, 1.8 × 1 −  2.73)  −  0.36 −  0.027 × 143 × 𝑎𝑛𝑑(0.31 −  0.006 × 486 , 1.79 × 1 −445 

 2.73), 1.79 × 1 +  0.91 × 1 +  0.0028 × 486  −  5.74, 𝑖𝑓(0.39 × 6 −  1.49, −1.52, 𝑖𝑓(1.08 −446 

 0.027 × 143 , 1.79 × 1 +  0.0061 × 486  −  3.39, −1.525)))))  −  39.98 −  0.024 × 486  −  0.047 × 143  −447 

 0.19 × 6 −  0.53 × 2 −  3.12 × 1 −  6.54 × 3) = 1.0 (this bridge is likely to undergo no/minor damage).  448 

Golden Gate Bridge 449 

The second case study covers a bridge fire that broke out in a traffic jam upon the Golden Gate 450 

Bridge, CA [47]. This fire resulted from a car collision. The bridge was reported to undergo a 451 

minor degree of damage due to such fire.  452 

Bridge features: 453 

Physical features:   454 

 Structural systems, S → Suspension system = 1 455 

Construction materials, M → Steel = 4 456 

Span, P → 1280 m 457 
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Age, A → 82 years 458 

Traffic features:   459 

Geographical significance, G → Urban = 3 460 

Number of lanes, N → 6 lanes 461 

Fire features: 462 

Closeness of fire break out, C → Above bridge = 1 (since the bridge crosses The Golden 463 

Gate strait and has a 67.1 m 464 

clearance above sea level). 465 

Type of fuel, T → Hydrocarbon fuels = 2 466 

Step 2: Deploy machine learning techniques: 467 

Based on DL tool  468 

Predicts the bridge will experience no/minor damage. 469 

Based on GA-proposed expressions: 470 

𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒 =  𝑠𝑡𝑒𝑝(69.5 × 4 +  7.6 × 1 +  𝑖𝑓(5.3 +  1.5 × 4 × 1 −  0.0062 × 1280 −  2.3 × 4 −  3.07 ×471 

1, 𝑡𝑎𝑛(218.24 +  𝑖𝑓(0.39 × 6 −  1.49, 0.39 × 6 −  1.49, 0.85 × 4 −  3.31)), 155.59 × 𝑚𝑎𝑥(1.08 × 2 −472 

 2.19, 1.79 × 1 −  2.73))  −  146.45 −  0.103 × 82 −  1.12 × 6 −  1.98 × 1280  −  3.04 × 2 −  6.49 × 3 −473 

 6.8 × 1)= 0.0 (the bridge is not expected to collapse → check for expressions 2 and 3).   474 

𝑁𝑜/𝑀𝑁 =  𝑠𝑡𝑒𝑝(17.57 × 4 +  3.03 × 1 +  𝑡𝑎𝑛(𝑖𝑓(0.006 × 1280  −  0.67, −1.53, 𝑖𝑓(1.37 × 𝑎𝑛𝑑(0.31 −475 

 0.0062 × 1280 , 1.8 × 1 −  2.73)  −  0.36 −  0.027 × 82 × 𝑎𝑛𝑑(0.31 −  0.006 × 1280, 1.79 × 1 −476 

 2.73), 1.79 × 1 +  0.91 × 1 +  0.0028 × 1280 −  5.74, 𝑖𝑓(0.39 × 6 −  1.49, −1.52, 𝑖𝑓(1.08 −477 

 0.027 × 82, 1.79 × 1 +  0.0061 × 1280 −  3.39, −1.525)))))  −  39.98 −  0.024 × 1280 −  0.047 × 82 −478 

 0.19 × 6 −  0.53 × 2 −  3.12 × 1 −  6.54 × 3)  = 1.0 (this bridge is likely to undergo no/minor damage).  479 

 480 
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 481 

MacArthur Maze Bridge 482 

The first case study covers the bridge fire that caused the collapse of MacArthur Maze in Oakland, 483 

CA in 2007. This fire broke out once a fuel tanker carrying 8450 gallons crashed under the 484 

MacArthur Maze interchange. This crash ignited the highly flammable fuel, which generated 485 

intense heat and temperatures exceeding 1000°C. The intense heat severely degraded the strength 486 

and stiffness of steel girders in this composite bridge, which had no fireproofing. As a result, 487 

significant fire-induced forces were developed in the weakened girders. After 22 minutes of the 488 

fire, the bridge collapsed. This collapse resulted in damages that were estimated at $9 million and 489 

shut down traffic in all three lanes causing significant detours. 490 

Bridge features: 491 

Physical features:   492 

 Structural systems, S → I-girders = 4 493 

Materials of construction, M → Composite (steel and concrete) = 3 494 

Span, P → 24.5 m 495 

Age, A → 37 years 496 

Traffic features:   497 

Geographical significance, G → Urban = 3 498 

Number of lanes, N → 6 lanes 499 

Fire features: 500 

Closeness of fire break out, C → Under bridge = 2 501 

Type of fuel, T → Hydrocarbon fuels = 2 502 
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Step 2: Deploy machine learning techniques: 503 

Based on DL tool  504 

Predicts the bridge will experience collapse.  505 

Based on GA-proposed expressions: 506 

𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒 =  𝑠𝑡𝑒𝑝 (69.5 × 3 +  7.6 × 4 +  𝑖𝑓 (5.3 +  1.5 × 3 × 2 −  0.0062 × 24.5 −  2.3 × 3 −  3.07 ×507 

2, 𝑡𝑎𝑛(218.24 +  𝑖𝑓(0.39 × 6 −  1.49, 0.39 × 6 −  1.49, 0.85 × 3 −  3.31)), 155.59 × 𝑚𝑎𝑥(1.08 × 2 −508 

 2.19, 1.79 × 2 −  2.73)) −  146.45 −  0.103 × 37 −  1.12 × 6 −  1.98 × 24.5 −  3.04 × 2 −  6.49 × 3 −509 

 6.8 × 2)= 1.0 (the bridge is expected to collapse – a check for expressions 1 and 2 returns a “0” value).   510 

It is worth mentioning that the above bridge is expected not to collapse (in this particular bridge 511 

fire) has it been designed with reinforced concrete girders as opposed to a composite system with 512 

steel I-girders. This infers the vulnerability of uninsulated steel girders to fire hazards. Other 513 

observations can also be arrived at by examining variations in expression no. 3. 514 

This outcome of this example shows that predictions from DL and GA may not always agree with 515 

documentation and observations from the actual incident, given their accuracy, which falls short 516 

of 100%. In this scenario, a designer may opt to select the worst-case scenario to be on the 517 

conservative side or perhaps s/he may option to undertake a much detailed analysis, say via 518 

complex FE analysis. Overall, the RAI approach is being improved to adopt ensemble (multi-519 

algorithms) machine learning technique to allow “majority voting”. In this technique, a fire 520 

vulnerability class will be assigned to a given bridge based on common class predictions from 521 

different algorithms.  522 
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6. Considerations for Future Works 523 

The proposed RAI machine learning approach seems to truly capture patterns of bridge fires and 524 

how such fires may adversely affect the integrity of bridges, and in some instances, may result in 525 

significant damage and/or collapse. This work could be regarded as a first step towards realizing 526 

a modern and automated identification of fire-vulnerable bridges. Still, the reader is to remember 527 

that a few burning issues continue to arise. For example, machine learning tools are best suited 528 

where there is a large number of observations. However, observations on bridge fires are: 1) very 529 

limited, 2) rarely documented or easily accessible, and 3) lack completeness in reporting common 530 

features such as (fire intensity, fire spread, quantitative damage assessment etc.). The above could 531 

also arise issues with regard to reliability, scalability, and public acceptance. Fortunately, these 532 

challenges will be overcome in future works [48–51].  533 

For now, the presented approach can still be confidently applied as a raw assessment tool that has 534 

the capability to offer designers with qualitative insights into how to mitigate extensive fire 535 

damage in bridges [32]. For example, the proposed tool can be applied during the early stage of 536 

the design of a new bridge to assess its vulnerability to fire (given that we still lack codal guidance 537 

on design a bridge for fire hazards). As such, the proposed tool could identify possible fire-related 538 

weaknesses such as that with regard to selecting a structural system or construction materials, etc. 539 

Arriving at such information during the design stage could be both of merit and cost-effective. 540 

Overall, the proposed approach can be considered as an “expert system” that can supplement 541 

current design procedures and may in fact compensate for the deficiency that a number of bridge 542 

engineers might suffer from when it comes to fire hazards. 543 
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A promising and attractive feature of machine learning approaches is their ability to self-improve 544 

with time and with the addition of new observations. As such, the proposed RAI approach could 545 

theoretically undergo a more rigorous validation and calibration process before being formally 546 

adopted into practice. Furthermore, effort should be made to develop machine learning tools that 547 

can quantitatively identify the magnitude of bridge damage to various extreme events as well as 548 

pinpoint how load bearing members will fail, and estimate expected cost of bridge restoration, 549 

indirect cost of shut down/supply chain operations, etc. Additional considerations worthy of note 550 

are those related to developing bug-free, user-friendly and aesthetic packages to allow scalable and 551 

easily deployable frameworks. Such a tool can be fostered by a government-based organization 552 

(i.e., DoTs) and can be linked to a computing cloud. Considerations with regard to security and 553 

wrongful use need to be addressed. Finally, the use of active learning techniques or reinforcement 554 

learning can help arrive at more optimal architecture of DL models, such as that developed herein, 555 

and hence future works are invited to tackle such research areas.  556 

7. Conclusions  557 

This paper presents the development of a rapid, automated, and intelligent (RAI) approach that 558 

leverages two machine learning algorithms DL and GA, to identify fire-vulnerable bridges. By 559 

examining 135 actual bridge fire incidents, the proposed approach has achieved an accuracy 560 

ranging between 70-89.6%. The proposed RAI approach also can quantitatively display its level of 561 

confidence in its predictions which can become handy to bridge engineers and government 562 

officials. This approach is implemented into freely available software (App) with optimized 563 

architecture and is easily scalable into a user-friendly framework and handheld devices. The 564 

following conclusions can also be drawn from this work:  565 
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• Recent years have noted a rise in bridge fires. Such fire incidents have led to damages and, in 566 

some cases, collapse. These incidents clearly show the vulnerability of bridges to fire hazards, 567 

given that these structures are not properly designed to withstand hazards. 568 

• Machine learning can be successfully applied to develop bridge assessment tools that can 569 

identify vulnerable bridges to fire hazard. These techniques can be specifically tailored to 570 

account for varying features such as those related to physical characteristics, traffic demands, 571 

fire intensity, etc., and can achieve 82.9-89.6% accuracy as noted in this study. 572 

• The RAI approach has optimized architecture and reduced computational complexity and hence 573 

is easily scalable and integratable into a user-friendly framework. This approach can be 574 

deployed to arrive at an instantaneous assessment of fire vulnerable bridges.  575 

• Future machine learning techniques can be enhanced given the addition of accurately 576 

documented observations on bridge fires. The same techniques are expected to be able to arrive 577 

at a quantitative assessment of expected damage and associated economic losses etc.  578 
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