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1.0 Abstract 8 

While artificial intelligence (AI), and by extension machine learning (ML), continues to be adopted 9 

in parallel engineering disciplines, the integration of AI/ML into the structural engineering domain 10 

remains minutus. This resistance towards AI and ML primarily stems from two folds: 1) the fact 11 

that coding/programming is not a frequent element in structural engineering curricula, and 2) these 12 

methods are displayed as blackboxes; the opposite of that often favored by structural engineering 13 

education and industry (i.e., testing, empirical analysis, numerical simulation, etc.). Naturally, 14 

structural engineers are reluctant to leverage AI/ML during their tenure as such technology is 15 

viewed as opaque. In the rare instances of engineers adopting AI/ML, a clear emphasis is displayed 16 

towards chasing goodness metrics to imply “viable” inference. However, and just like the notion 17 

of correlation does not infer causation, forced goodness is prone to indicate a false sense of 18 

inference. To overcome this challenge, this paper advocates for a modern form of AI, one that is 19 

humanly explainable; thereby eXplainable Artificial Intelligence (XAI) and interpretable machine 20 

learning (IML). Thus, this work dives into the inner workings of a typical analysis to demystify 21 

how AI/ML model predictions can be evaluated and interpreted through a collection of agnostic 22 

methods (e.g., feature importance, partial dependence plots, feature interactions, SHAP (SHapley 23 

Additive exPlanations), and surrogates) via a thorough examination of a case study carried out on 24 

a comprehensive database compiled on reinforced concrete (RC) beams strengthened with fiber-25 

reinforced polymer (FRP) composite laminates. In this case study, three algorithms, namely: 26 

Extreme Gradient Boosted Trees (ExGBT), Light gradient boosted trees (LGBT), and Keras Deep 27 

Neural Networks (KDNN), are applied to predict the maximum moment capacity of FRP-28 

strengthened beams and the propensity of the FRP system to fail under various mechanisms. 29 

Finally, a philosophical engineering perspective into future research directions pertaining to this 30 

domain is presented and articulated.  31 

 32 

Keywords: Explainable artificial intelligence (XAI); Interpretable machine learning (IML); 33 

Structural engineering; Concrete; FRP. 34 

2.0 Introduction 35 

Common methods used for the analysis and design of structures are a reflection of our 36 

understanding of the physics of structural engineering phenomena and describe such 37 

understanding, or causal effects, through symbols fitted into expressions [1]. In a way, such 38 

methods are primarily developed as a result of mathematical derivation, empirical or statistical 39 

analysis of experimental findings, or numerical simulations that infer the relationship between 40 

predictor variable(s) and response variable(s) [2,3]. Despite their origin, these methods share a few 41 
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characteristics in common; 1) they are transparent as they comprise of formulae, 2) they establish 42 

a procedure with iterative steps, 3) they are universal and mostly region-independent, 4) they have 43 

built-in reliability to favor conservativeness, and 5) they are often accepted via a community effort 44 

(i.e., voting committees) and tend to be regularly updated and disseminated as codal provisions.  45 

Given the above, structural engineers are trained to appreciate the transparency of commonly 46 

adopted methods for analysis and design. And hence, any deviation from this norm is expected to 47 

be faced with inertia, which explains why the construction industry is often reluctant to adopt new 48 

technologies [4,5]. A prime example of such technology is artificial intelligence (AI) and machine 49 

learning (ML). AI/ML capitalizes on novel algorithms to map features governing a phenomenon 50 

to the outcome of interest to that particular phenomenon [6]. As one can see, a typical analysis 51 

fundamentally comprises of three stages: input observations → mapping → deploy on new data 52 

[7–10]. While the first and last stages are easy to follow as they require little effort to visualize, 53 

most structural engineers are not well versed with the “mapping” stage despite being tackled by 54 

various works over the past years [11–17].   55 

However, a key component within this stage that continues to be vague revolves around answering 56 

the following questions, 1) why does a model predict the way it does? 2) what to make out of a 57 

typical model’s predictions? And, 3) how to trust a model’s predictions? These questions are 58 

elemental to adopt AI/ML into engineering fields that traditionally favor transparent methods, 59 

which most importantly, allow cross-checking, authentication, and contestability [18].  60 

In the realm of computer science, explainability and interpretability can often be used 61 

interchangeably [19]. However, there are subtle differences between these two concepts. Simply 62 

put, explainability is generally coined for “models that are able to summarize the reasons for 63 

neural network behavior, gain the trust of users, or produce insights about the causes of their 64 

decisions,” while interpretability is “loosely defined as the science of comprehending what a 65 

model did (or might have done)” [20]. In a way, explainability entails relating the inner 66 

mechanisms of a model and their influence upon a model’s prediction, while interpretability 67 

implies a determination of cause and effect. Ultimately, an explainable model represents a complex 68 

function that may not be understood on its own but instead requires additional methods or 69 

techniques to be understood. On the other hand, a model can be interpretable if humans can 70 

understand it without aid (see Table 1). Other definitions and philosophical arguments concerning 71 

explainability, interpretability, transparency, justifiability, and XAI are discussed in Sec. 2.0 and 72 

can be found elsewhere [21–24].  73 

 74 

 75 

 76 

 77 
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Table 1 Level of explainability in common models. 78 

Model type 

Can humans easily 

understand this 

model? 

Types of mechanisms used in a 

model. 

Need 

explainability/interpreta

bly methods? 

Linear/Logistic 

Regression 
Yes. Mathematical based. 

Simple/basic models that 

are inertly explainable. 

Tree-like (Decision 

Tree, Random 

Forest) 

Yes, by displaying a tree 

formation. 

Rule-based that display how the 

decisions are taken at each step. 
Not necessary.  

k-Nearest Neighbors 

(k-NN) 
Yes. 

Tackles a large number of variables via 

mathematical/statistical representations. 

Mostly visually 

explainable. 

General Additive 

Models (GAM) 

Mostly, and especially if 

interactions between 

features are smoothened. Needs mathematical/statistical 

representation. 

No, unless interactions 

turn complex. 

Genetic Algorithms 

(GA) 

Yes, since they resemble 

a tree-like structure.  
Mostly readable. 

Tree Ensembles 

(ExGBT, LGBT) 

Unlikely.  

Blenders of weaker models. 

Very complex models 

that require further 

analysis via agnostic or 

specific methods.  

Support Vector 

Machines (SVM) 

Categorize data via hyperplanes in N-

dimensional space.  

Neural Network 

(NNs) 

Layers containing neurons and 

transformation functions 

 79 

A closer look into existing literature shows that publications utilizing AI/ML continue to rise in 80 

this domain and are expected to continue to do so [25]. This implies that the structural engineering 81 

community is interested in this technology. Building upon trends in parallel engineering fields 82 

extrapolated to a few years from now, AI-based methods will comprise a considerable portion of 83 

the developments within this area. As such, facilitating the integration of AI/ML is of our utmost 84 

importance [26]. From this perspective, a survey of literature shows that AI/ML has been used in 85 

a collection of structural engineering problems [27–31]. At the writing of this work, these 86 

technologies have been applied to explore properties of construction materials [27,28,32], 87 

prediction of structural responses of elements such as walls [33], bridges [34], beams [14], among 88 

others [35–37]. In addition, AI/ML has also been used to examine the quality of constructions and 89 

inspections [38–44].  90 

 91 
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A deep dive into the open literature shows that the bulk of AI/ML works applied these techniques 92 

to: 1) tie a group of features to a needed outcome (e.g., link concrete mix ingredients to expected 93 

compressive strength, etc.), and 2) be primarily designed to attain a certain level of goodness; 94 

thereby declared to having a permissible prediction capability, and generalizability. However, little 95 

is ever mentioned to that of how or why a model predicts the way it does. It is the view of this 96 

author that satisfying a selected performance metrics does not effectively imply that an AI/ML 97 

model captures the physics behind a phenomenon but rather infers the suitability of such model to 98 

predict the outcome described within the examined database, which is assumed to present a holistic 99 

view into the physics behind the phenomenon being investigated [45]. In other words, correlation 100 

does not always suggest causation, for which causation requires a display of a deep level of 101 

understanding that may go beyond satisfying selected measures of goodness [46].  102 

 103 

From this perspective, understanding why a model predicts the way it does can open up new and 104 

exciting opportunities to structural engineers. For instance, and going back to our earlier example 105 

of tying concrete mix ingredients to the expected compressive strength, developing an AI/ML 106 

model that can truly capture this phenomenon might, in fact, be beneficial as it may infer hidden 107 

relation(s) between the examined ingredients (i.e., features) that are new to us. This concept, once 108 

extended beyond this particular example, can help engineers discover new mechanics to some of 109 

their common problems and may indeed open up new solutions to existing or long-lasting 110 

problems [47].   111 

 112 

The above brings in the important question of how to infer a model’s understanding of a 113 

phenomenon? Or better yet, of an engineering phenomenon? Despite XAI/IML being a  relatively 114 

new research area, a few methods exist to explore the reasoning behind an AI/ML model 115 

predictions [48,49]. These methods vary in terms of nature (e.g., intrinsic [simple models i.e., 116 

trees] vs. post hoc [complex models i.e., deep networks]), type (model-agnostic [i.e. applied to any 117 

AI/ML model] vs. model-specific [i.e. particular to family of models]), and scale (local [i.e. 118 

explain individual predictions] vs. global [i.e. explain model behavior as a whole]) [50].  119 

 120 

Of interest to this work are methods that have been usually grouped under “model agnostic” and 121 

“model specific”. On one hand, model agnostic methods can be used across algorithms and 122 

platforms (which provides the user (a structural engineer) with an advantage of comparing 123 

different models following a consistent approach), while model-specific methods are only 124 

applicable to a specific AI/ML model due to the nature behind such methods’ developments 125 

[51,52]. Model agnostic methods include feature importance, partial dependence plots, feature 126 

interactions, SHAP (SHapley Additive exPlanations), surrogates, and local interpretable model-127 

agnostic explanations (LIME). On the other hand, model-specific methods include: generalized 128 

linear models and tree-based ensemble models [50,53,54].  129 

 130 

This work advocates for implementing a humanly plausible (i.e., explainable) form of AI; thereby 131 

eXplainable Artificial Intelligence (XAI), and by extension, Interpretable Machine Learning 132 

(IML). To provide the reader with an arsenal to demystify how model predictions can be 133 
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interpreted, this paper examines a collection of agnostic methods (e.g., partial dependence plots, 134 

feature importance, feature interactions, SHAP, and surrogates), together with commonly accepted 135 

performance metrics. A case study on reinforced concrete (RC) beams strengthened with fiber-136 

reinforced polymer (FRP) composite laminates is selected for demonstration. In this case study, 137 

the Extreme Gradient Boosted Trees (ExGBT), Light gradient boosted trees (LGBT), and Keras 138 

Deep Neural Networks (KDNN) are applied to predict the maximum moment capacity of FRP-139 

strengthened beams and the propensity of the FRP system to fail under a variety of modes (e.g., 140 

debonding, steel yielding, concrete cover separation, mixed-mode, and FRP fracture).  141 

3.0 A Philosophical Engineering Perspective into XAI and IML  142 

Every profession is molded by its people. As such, structural engineers get to shape how their 143 

domain transforms in the coming years. It is only natural for a domain to be influenced by advances 144 

occurring in parallel domains. Since the design of structures is an involved process that requires 145 

interaction with engineers from other fields (presumably those who are leveraging AI/ML at the 146 

moment (e.g., mechanical engineers, etc.)), then it is only a matter of time before such interactions 147 

bring in the notion of AI/ML into our domain. Noting the tremendous improvements (work quality, 148 

revenue generation, etc.) such technologies are attributing to other fields, then perhaps we ought 149 

to consider adopting AI/ML into ours.  150 

In this pursuit, the author hopes that we do not have to go through the same cycles of integration 151 

other domains have gone through, thereby avoiding the pain of trials and errors associated with re-152 

inventing the wheel. A more thought of integration of AI/ML that learns from experiences in other 153 

fields is expected to ensure safe and attractive integration of these technologies into our domain. 154 

This work sheds some light on the future of XAI and IML in structural engineering. A deep dive 155 

into the big ideas behind XAI and IML shows that they fall in line with principles relevant to the 156 

structural engineering practice and industry, much more so than that of traditional AI and ML. 157 

However, such ideas are not properly articulated from an engineering perspective, and hence these 158 

are conveyed herein. 159 

Engineers need to trust their methods and tools – especially those to be deployed in real scenarios 160 

(which in our domain involves the lives and well beings of occupants and the surrounding 161 

environment, etc.). Since XAI and IML strive to deliver a high level of trust between engineers 162 

and AI/ML, then these technologies do provide an improvement over those of traditional AI-163 

nature. Still, one must be cautious of the degree of explainability provided by a model, as the 164 

degree of “required” explainability can be different in practical scenarios (i.e., design of a high-165 

rise building vs. design of a storage unit), as well as to that anticipated by the practicing 166 

engineer/stakeholder/building official [55]. In other words, explainability is fluid and is highly 167 

context-dependent. This particular idea of establishing a “required” degree of explainability 168 

mirrors the rules of thumbs practiced in structural design. For example, an engineer trusts that 169 

following codal provisions will lead to a favorable performance under stressful conditions.  170 

Building on the above, the notion of trusting AI is complicated since it requires to first define what 171 

trust is to structural engineers? As trust can be subjective, this notion does bring the idea of 172 
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transparency [56]. This concept implies that an engineer has some understanding of the means by 173 

which an AI/ML model operates (e.g., a decision tree model splits the examined dataset into a tree-174 

like format, etc.) in a similar manner to her/his understanding of how local buckling checks 175 

examine the propensity of a structural shape to buckle.  176 

In addition, a transparent model can also be thought of as a favorite for stakeholders since they can 177 

easily visualize its working mechanisms. Besides, the ability to easily visualize the works of a 178 

model makes it easy for those of limited technical background to understand AI/ML predictions, 179 

or at the very least see why a model predicts the way it does. A parallel to trust and transparency 180 

is confidence. In engineering terms, attaining confidence can be achieved by developing reliable 181 

models; those with the capability to disclose a quantifiable level of confidence in line with their 182 

predictions (e.g., the expected shear capacity of a W-shaped steel beam with specific properties 183 

and under a confidence level of 95% is 100 kN ± 5 kN and). 184 

One of the fundamental premises for AI/ML is that it can provide us with data-driven valuable 185 

insights that existing methods fail to provide or may not realize due to assumptions used in deriving 186 

such methods or simply due to their limited extrapolatibity. A structural engineer is primarily 187 

interested in identifying causes and effects (say, how does a load-bearing configuration resists a 188 

particular load condition). While traditional analysis and design methods for common elements 189 

(e.g., beams, columns, frames) can capture such effects with high accuracy, one is reminded that 190 

such methods took decades of experimentation to arrive at this level of accurately capturing the 191 

aforenoted causation [57]. Both XAI and IML have the potential to realize such a degree of 192 

inference, not only for simple elements but also for more complex designs, and hence these are of 193 

merit to structural engineers. If the stars align, XAI and IML can at the very least elucidate areas 194 

of high merit for exploration between features pertaining to realizing true causation within the 195 

realm of the structural design.  196 

Oftentimes, data is limited [58]. That does not imply that we do not have data from years of 197 

engineering practice, but rather the data we have access to and can use to train AI/ML models is 198 

limited. This brings in a limitation not only to train models but also to train models capable of 199 

proper generalization beyond their training data points. As such, it will be foolish to solely rely on 200 

such a model as it may lead to serious consequences. An XAI/IML can be helpful in which it could 201 

be designed to provide examples as to why it made its predictions (e.g., in a given connection 202 

design that falls beyond the range of codal provisions, a model may layout a preliminary 203 

connection type with an estimated number of bolts, etc. while attributing its decision to an 204 

analogous connection of similar properties to the one on hand but used at a sister project). In this 205 

instance, while the model may not have arrived at a “prediction” per se, it did, however, direct us 206 

to a sort of solution that can jump-start our design. This is often referred to as analog 207 

informativeness or simply explainability by examples.  208 

A look into engineers’ role in society shows that one of their primary goals is to address social 209 

problems [59]. From a structural engineering perspective, this goal can be achieved by creating 210 

safe, suitable, and affordable structures for all. In most settings, certain decisions can be undertaken 211 

without regard to social status since, at the end of the day, a structural design is to satisfy an array 212 
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of conditions. Applying an AI/ML model to such scenarios is expected to be naturally 213 

straightforward (“math is math, and physics is physics”). However, in instances where 214 

stakeholders belong to weaker/forgotten sections of our society, then in addition to satisfying codal 215 

design provisions, we must also adhere to additional “social attributes” to realize socially just 216 

structures. XAI and IML can be integrated with fairness and inclusivity to identify affordable 217 

alternatives to new constructions, eco-friendly building materials, etc. The same can also generate 218 

designs that leverage novel initiates such as green constructions, adaptability, and circular 219 

economy [60,61].  220 

The reader should note that the philosophical discussion on XAI and IML grows beyond the scope 221 

of this work to that which may cover autonomy, biasness, accessibility, interactivity, privacy, the 222 

trade-off between accuracy and explainability, and others [55,62].  223 

4.0 Model Agnostic Methods for Explainability and Interpretability 224 

This section briefly describes five commonly used model agnostic techniques in detail. The 225 

methods described herein can be used to explain a model’s predictions on the global (all dataset) 226 

or local (a portion of the dataset) levels. These methods are applied to post the development of a 227 

model and completion of an AI/ML analysis and can be plugged into any AI/ML model – hence 228 

becoming useful on a larger scale. The reader is to note that information regarding the history, 229 

mathematical derivation, and the background of each technique can be found in their perspective 230 

references and in [48]. All these techniques will be examined via the presented case study in a later 231 

section.  232 

4.1 Feature Importance  233 

A typical AI/ML model comprises multiple features, wherein each feature makes a unique and 234 

likely quantifiable contribution towards the response (prediction) of such a model. As a result, a 235 

model can be interpreted by understanding the influence of each of its own features. Herein where 236 

feature importance comes in handy. Feature importance is a generic term for the degree to which 237 

an AI/ML model relies on a particular feature in its prediction, and hence this method measures 238 

the extent to which a given feature influences the outcome of an AI/ML model. This can be 239 

measured by evaluating the increase of a model’s prediction error after permuting the involved 240 

features systematically [63]. In a way, the concept behind feature importance is to measure the 241 

entropy in the change of predictions, given a perturbation of a given feature. In this process, a 242 

feature is declared “important” if permuting its values increases the model error, effectively 243 

indicating that the model relied on this particular feature to arrive at a good prediction. Similarly, 244 

a feature is deemed “not important” if its permutation maintains the prediction error unchanged.  245 

4.2 Partial Dependence Plots 246 

The partial dependence plot (PDP) depicts an individual feature's marginal effect, or group of 247 

features, on the prediction of an AI/ML model while holding other features constant within the 248 

same model [64]. Such a plot can also be used to infer the type of relationship between the 249 

feature(s) and response(s), e.g., linear, nonlinear, or complex. Overall, the PDP accounts for all 250 

observations in a database to give inference to the global relationship of a feature on the predicted 251 
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outcome. A PDP helps determine the transition in a model’s predictive performance to the change 252 

in the feature(s). The result of partial dependence describes the impact of a feature on a model’s 253 

prediction (similar to how a coefficient reflects weight in a regression model). Unlike in regression, 254 

when a PDP is applied to a classification problem, this method gives the probability for a particular 255 

class given different values for feature(s) in a database. One should note a fundamental assumption 256 

in PDP relates to feature(s) of interest not being correlated with other features. An extension to 257 

PDP is known as Individual Conditional Expectation (ICE) plot [65]. An ICE plot displays how a 258 

prediction changes when a feature changes. Unlike a PDP, ICE does not average the relationship 259 

between features and predicted responses. 260 

4.3 Feature Interaction 261 

Feature interaction involves two or more features influencing each other (or interacting) during an 262 

AI/ML analysis. It is due to the existence of such interaction that the overall prediction 263 

performance of an AI/ML model is not equal to the simple sum of all features. For example, in a 264 

given AI/ML model, two features are said to interact when the effect of one feature on the response 265 

of the model is not constant but also depends on the value of the second feature [66]. In a simple 266 

AI/ML model that has two features (X1 and X2), a given prediction from such a model can be 267 

broken down into four component terms; a constant term, a term for the first feature, a term for the 268 

second feature, and a fourth term that contains an interaction between the two original features 269 

[67]. Feature interactions can be evaluated via methods such as correlation matrix1, association 270 

matrix, Cramer’s Phi, or heat maps [68]. This method can also be used to select features during 271 

the processing stage. 272 

4.4 SHAP (SHapley Additive exPlanations) 273 

The SHAP method is considered as a unified agnostic method that can be applied to explain 274 

individual responses (i.e., output/predictions) of any AI/ML model [52,69]. SHAP is based on a 275 

game theory approach to additively accumulate the contribution of all features involved in a model. 276 

As such, this method assigns each feature an “importance value” within a set of conditional 277 

expectations for a particular prediction. The results of this additive procedure are called “SHAP 278 

values”. These values can be spread across from a “base value” (which represents the average of 279 

the observations). Then, the SHAP method would graphically list the contribution of all features 280 

to the SHAP value, identifying which feature(s) contributed to such value being larger or smaller 281 

than the “base value” in order. As one can see, since the SHAP method accounts for all features 282 

and randomness of their order, this method can be quite computationally expensive for large 283 

models, yet necessary to understand the logic behind AI/ML models. 284 

 
1 For example, the Pearson correlation matrix is a visual aid in the form of a table that lists the “linear” correlation 

coefficients between features. Such matrix summarizes the degree of correlation between features and can be used to 

explain the selection of highly independent features and deselection of dependent features or those of limited impact. 

Still, one of the limitations of such matrix is that is relies on “linear” correlation between variables which may not be 

of high merit if the relationship between variable is of a complex nature – as such the use of other feature selection 

methods become more beneficial. 
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4.5 Surrogates 285 

In this method, an external secondary AI/ML model is used to proxy (or simply explain) the 286 

prediction of an existing model. The external model is often simple in nature, or one that we have 287 

a clear understating of its inner mechanisms (e.g., a linear model); thereby, and once augmented 288 

into the complex model, the surrogate may be used to give us insights into why the complex model 289 

predicts the way it does [70]. In practice, the choice of a surrogate model is decoupled from the 290 

complex model; as technically, all that a user needs is a model that is simple in nature and can 291 

capture the predictions of the original model with good accuracy (such as additive models, genetic 292 

algorithms, tree-like models [71–73]). Note that accuracy, in this context, could refer to attaining 293 

an adequate performance metric (e.g., coefficient of determination).  294 

5.0 Description of Database 295 

This section describes the examined database to be used in this work as a case study.  296 

5.1 Database on Reinforced Concrete (RC) Beams Strengthened with Fiber Reinforced Polymer 297 

(FRP) Composite Laminates 298 

The adopted database herein was compiled in a companion work [74] and collected comprehensive 299 

data from 103 experimental tests carried out on RC beams strengthened with FRP composites. 300 

This database includes full information on compressive strength of concrete (fc), yield strength of 301 

steel reinforcement (fy), ratio of steel reinforcement (rs), FRP ratio (rf), modulus of FRP (Efr), 302 

moment arm (a), and strengthening type (T). All features were collected from the following works 303 

[75–92] and are compiled into this database. The outcome/response of this database resembles the 304 

magnitude of moment capacity, and failure mode observed in each corresponding test (i.e., steel 305 

yielding/concrete crushing, debonding, concrete cover separation, mixed-mode, and FRP rupture). 306 

In a way, this database can be used in a regression problem (to predict the magnitude of moment 307 

capacity at failure), or in binary- (failure through FRP system vs. steel yielding), or multi-308 

classification problem (failure due to a collection of causes such as debonding, steel yielding, 309 

concrete cover separation, mixed-mode, and FRP fracture).  310 

 311 

A deep examination of Table 2 shows that the compiled database and range of features used cover 312 

practical scenarios in which FRP-strengthened members are often used and agree with that 313 

identified in design building codes [93–96]. It can then be inferred that the developed database 314 

represents scenarios a structural engineer can face in practice and hence can be used with 315 

confidence. Table 2 and Fig. 1 list the selected features and their ranges. One should note that 42 316 

beams failed via steel yielding, and 59 beams failed due to FRP system failure (debonding: 18 317 

beams, concrete cover separation: 18 beams, mixed-mode: 16 beams, and FRP rupture: 7 beams).  318 

 319 

 320 

 321 
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Table 2 Sample database for FRP-reinforced concrete beams for moment capacity and failure 322 

mode identification  323 
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327 

 328 

Fig. 1 Frequency of identified features in the compiled database 329 
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Table 3 shows further statistical insights into the compiled database. For example, the minimum 330 

and maximum compressive and yield strength of the compiled beams range between 31-80 MPa 331 

and 352 and 788 MPa, respectively. The steel and FRP ratios have a maximum range of 2.5% and 332 

3.1%, respectively, typical of that used in RC beams design. The modulus of FRP ranges from low 333 

stiffness (11.7 GPa) to high stiffness (240 GPa). The same table also shows a sensitivity analysis 334 

to identify the correlation between all features compiled in this database. The outcome of this 335 

analysis shows that moment arm has a strong positive correlation with the moment at failure and 336 

also shows that beams’ material properties and geometric features seem to have a medium 337 

correlation with the observed moment at failure.  338 

Table 3 Key statistics. 339 

Section Features fc (mm) 
fy 

(mm) 
rs (%) rf (%) Efr (GPa) a (mm) T 

M 

(kN.m) 

FRP-

strengthened 

RC beams 

Min 31.0 352.0 0.0 0.0 11.7 300.0 1.0 6.0 

Max 80.0 788.0 2.5 3.1 240.0 1830.0 2.0 585.0 

Average 43.0 530.6 0.7 0.4 129.0 881.3 1.3 119.9 

Standard 

deviation 
8.9 116.5 0.4 0.5 65.6 444.6 0.5 142.7 

Median 0.7 0.8 1.5 3.0 -0.2 1.1 0.9 2.0 

Skewness 31.0 352.0 0.0 0.0 11.7 300.0 1.0 6.0 

          

Parameter fc fy rs rf Efr a T M 

fc 1.000        

fy 0.315 1.000       

rs -0.007 -0.399 1.000      

rf -0.102 -0.256 0.039 1.000     

Efr 0.180 0.277 -0.092 -0.550 1.000    

a -0.489 -0.596 0.396 0.139 -0.174 1.000   

T -0.181 0.230 -0.274 -0.291 0.052 -0.082 1.000  

M -0.471 -0.457 0.430 0.041 -0.083 0.907 -0.169 1.000 

6.0 Selected Machine Learning Algorithms   340 

As mentioned earlier, the primary goal of this work is to showcase the application of the AI/ML 341 

explainable methods described in an earlier section. In this pursuit, three algorithms are selected 342 

for showcasing the applicability of these methods, namely, Extreme Gradient Boosted Trees 343 

(ExGBT), Light Gradient Boosted Trees (LGBT), and Keras Deep Residual Neural Network 344 

(KDNN)), and these are briefly discussed herein with the full description being found in their 345 

respective references, as well as in [97,98].  346 

6.1 Extreme Gradient Boosted Trees (ExGBT) 347 

The ExGBT algorithm re-samples the collected data points into a tree-like format, where each tree 348 

sees a boostrap portion (a sampled dataset with replacement) of the database in each iteration [99]. 349 
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ExGBT fits each successive tree to previous residual errors obtained from previous trees, thereby 350 

focusing the prediction effort of each iteration on the most challenging responses to predict, which 351 

becomes a good practice for the algorithm to yield high prediction accuracy (see Eq. 1). The 352 

ExGBT brings two techniques to improve the performance of a GBT; a weighted quantile sketch 353 

(an approximation algorithm for determining how to make splits candidate in a tree) and the 354 

sparsity-aware split finding (which works on sparse data, as well as data with missing values). The 355 

ExGBT uses a pre-sorted algorithm and a histogram-based algorithm for computing the best split 356 

[54].  357 

 358 

𝑌 = ∑ 𝑓𝑘(𝑥𝑖)𝑀
𝑘=1 , 𝑓𝑘 ∈ 𝐹 = {𝑓𝑥 = 𝑤𝑞(𝑥), 𝑞: 𝑅𝑝 → 𝑇, 𝑤 ∈ 𝑅𝑇}    (1) 359 

 360 

Where, M is additive functions, T is the number of leaves in the tree, w is a leaf weights 361 

vector, wi is a score on i-th leaf, and q(x) represents the structure of each tree that maps an 362 

observation to the corresponding leaf index [100]. The code of the used ExGBT can be found 363 

online at [101,102]. This algorithm incorporates the following pre-tuned settings of learning rate 364 

of 0.015, maximum tree depth of 3, subsample feature of 0.8, and 500 for the number of boosting 365 

stages. 366 

 367 

6.2 Light Gradient Boosted Trees (LGBT) 368 

Light gradient boosted trees is an algorithm that requires little processing and resembles that of 369 

the random forest algorithm (which contains a series of tree-like elements) [103]. The LGBT 370 

successively fits the trees and fits the residual errors from all the previous trees combined [104]. 371 

This is advantageous, as the model focuses each iteration on the most challenging examples to 372 

predict. Similar to the ExGBT, the LGBM algorithm introduces two new techniques to further 373 

improve its the performance. These techniques are gradient-based one-side sampling (which 374 

identifies the most informative observations and skips those less informative), and exclusive 375 

feature bundling (which groups features in a near-lossless way) [105]. The used algorithm can be 376 

found at [106] with the following default settings: learning rate = 0.05, maximum depth = “none”, 377 

number of boosting stages = 500.  378 

6.3 Keras Deep Residual Neural Network (KDNN) 379 

Keras is a high-level library for developing neural networks [107]. In a residual network, a direct 380 

connection exists linking data points to the outputs. Such a connection smoothens out the loss 381 

function and enables better optimization of the network. In the used KDNN, default settings of a 382 

learning rate of 0.03 was used, along with a Prelu activation function, one layer containing 64 383 

neurons. KDNN can be readily found at [108]. 384 

7.0 Model Performance 385 

A proper AI/ML analysis aims to minimize flaws within selected models. This is often handled by 386 

randomly shuffling and splitting the database into three sets (T: training, V: validation, and S: 387 
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testing). A model is then trained and validated on the first two sets, respectively, and then 388 

independently checked against the last set (since it was not involved in the training and validation 389 

procedure). In all cases, 10-fold cross-validation was also employed.  390 

In addition to the above, and in order to verify the adequacy of the selected models, model 391 

predictions were first cross-checked against performance metrics. Such metrics pertain to 392 

mathematical constructs intended to measure test measurements' closeness to that predicted by a 393 

model [109–111]. In this work, metrics from two domains, regression, and classification, are 394 

selected (see Table 4). These listed metrics are frequently used within the structural engineering 395 

domain, among others [7,12,112,113]. The regression metrics include Mean Absolute Percentage 396 

Error (MAPE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R2). Briefly, 397 

MAPE measures the error between continuous variables as a percentage, while RMSE measures 398 

the standard deviation of residuals and describes the errors in a scale-independent order. R2 is a 399 

scale-free score that measures the degree of association between observed and predicted values.  400 

For classification, three metrics are also presented, including; Balanced accuracy (BACC), Area 401 

under the ROC curve (AUC), and Log Loss Error (LLE). The BACC is useful in scenarios 402 

involving imbalanced features and multi-classes. The AUC measures the area under the Receiver 403 

Operating Characteristic (ROC) curve, with a value of unity indicating an accurate prediction. The 404 

LLE measures a classification model's performance whose output is a probability value between 0 405 

and 1, with values approaching zero inferring perfect performance.  406 

 407 

As one can see from the results listed in Table 4 and Fig. 2, the ExGBT algorithm seems to 408 

outperform that of the LGBT and KDNN in most comparisons and for all selected performance 409 

metrics. This implies that this algorithm did indeed capture the two examined phenomena provided 410 

by the database (i.e., regression to predict moment capacity at failure and classification to predict 411 

mode of failure). As such, only the ExGBT is augmented with methods of explainability to 412 

understand its reasoning behind its predictions better.  413 

 414 
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 415 
Fig. 2 Comparison between ExGBT, LGBT, and KDNN 416 
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Table 4 List of selected performance metrics.  418 

Problem Name Metric ExGBT LGBT KDNN 

R
eg
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ss
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n

 

Mean Absolute 

Percentage Error 

(MAPE) 

𝑀𝐴𝑃𝐸 =
100

𝑛
 ∑|𝐸𝑖|/|𝐴𝑖|

𝑛

𝑖=1

 

T V S T V S T V S 

35.29 21.79 27.56 54.03 38.6 50.59 51.45 38.56 26.97 

Root Mean 

Squared Error 

(RMSE) 

𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
 

 

21.35 26.16 41.19 49.30 40.86 67.17 33.39 49.50 39.41 

Coefficient of 

Determination 

(R2) 

𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)
2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛
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accuracy (BACC) 

𝐵𝐴𝐶𝐶 =
1

𝑀
∑

𝑟𝑚

𝑛𝑚

𝑀

𝑚=1

 

Where, M = number of classes, nm= data size belongs to 

class m, rm=number of data accurately predicted 

belonging to class m. 

0.68 0.44 0.52 0.48 0.36 0.61 0.42 0.37 0.49 

0.84 0.85 0.49 0.61 0.72 0.5 0.51 0.57 0.53 

Area under the 

ROC curve 

(AUC) 
𝐴𝑈𝐶= ∑

1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖) 

0.83 0.80 0.84 0.81 0.75 0.87 0.81 0.78 0.70 

0.92 0.93 0.75 0.81 0.86 0.75 0.75 0.78 0.76 

Log Loss Error 

(LLE) 

 

𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃

𝑀

𝑐=1

, 

where, M:  number of classes, c: class label, y: binary 

indicator (0 or 1) if c is the correct classification for a 

given observation. 

1.03 1.09 1.11 1.21 1.25 1.13 1.28 1.28 1.81 

0.42 0.36 0.61 0.55 0.49 0.53 0.52 0.49 0.56 

A: actual measurements, P: predictions, n: number of data points, E = A-P, P (denotes the number of real positives), N (denotes the 419 

number of real negatives), TP (denotes true positives), and FP (denotes false positives).420 
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8.0 Evaluation of Explainability and Interpretability    421 

In this section, the five previously described model agnostic methods are applied to the ExGBT 422 

model.  423 

8.1 Feature Importance  424 

Feature importance showcases the degree to which an AI/ML model relies on a particular feature 425 

and hence measures the extent to which a given feature influences the outcome of an AI/ML model. 426 

In the developed regression model, the feature importance of moment arm (a) was shown to be 427 

dominant, followed by the ratio of steel reinforcement (16.67%), FRP ratio (10.62%), yield 428 

strength of steel reinforcement (10.25%), modulus of FRP (5.76%), compressive strength of 429 

concrete (5.06%), and strengthening type (2.35%).  430 

On the binary classification front, the importance of features varies from that observed on the 431 

regression front. In this instance, the dominant feature is the ratio of steel reinforcement, followed 432 

by moment arm (54.47%), yield strength of steel reinforcement (41.77%), modulus of FRP 433 

(25.91%), compressive strength of concrete (24.14%), strengthening type (15.38%), and FRP ratio 434 

(13.57%). Then, on the multi-classification front, the dominant feature is the ratio of steel 435 

reinforcement, followed by the yield strength of steel reinforcement (78.81%), FRP ratio (52.24%), 436 

moment arm (38.77%), compressive strength of concrete (34.66%), modulus of FRP (28.61%), 437 

and strengthening type (17.39%). This analysis shows that despite using the same database and 438 

algorithm, the type of analysis can affect the importance distribution of selected features involved 439 

in the database.  440 

Figure 3 shows a graphical distribution of the importance of all features in the above three analyses. 441 

The same figure also shows the considerable variation in feature importance between moment 442 

prediction (i.e., regression problem) and failure prediction (classification problem). Simply put, 443 

the reasoning behind ExGBT prediction of the moment capacity of a given beam is primarily 444 

governed by the length of the moment arm. Similarly, a model’s prediction of classifying failure 445 

of beams is influenced by the degree of reinforcement ratio, followed by the yield strength of 446 

reinforcement and FRP level of strengthening. Besides, a close examination of this figure shows a 447 

general agreement between the importance of features in the case of binary and multi-classification 448 

of the failure phenomenon in FRP-strengthened RC beams, with the exception of yield strength of 449 

steel reinforcement and FRP ratio.  450 
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 451 
Fig. 3 Explainability through feature importance values 452 

The reader is reminded that this analysis does not aim to justify the model’s predictions or to 453 

declare validity, but rather this analysis aims to explain why a model is behaving the way it does. 454 

From a structural engineering perspective, and for identical beams, a larger moment arm is 455 

expected to generate a high moment magnitude (in a simply supported configuration), thereby 456 

significantly influencing the attained moment. Furthermore, in classifying a failure mechanism, a 457 

balance between steel and FRP materials primarily dictates the expected failure, as noted by a 458 

number of researchers [79,114]. From a practical view, if an engineer aims to identify important 459 

features in a given problem, then perhaps a good practice is to compare feature importance results 460 

across a collection of parallel models to identify features highly ranked by different models.  461 

8.2 Partial Dependence Plots 462 

As discussed earlier, a PDP depicts the marginal effect of an individual feature, or group of 463 

features, on the prediction of an AI/ML model while holding other features constant within the 464 

same model [64]. Thus, Fig. 3 shows PDPs for all features used in the moment capacity prediction 465 

analysis, as well as the binary prediction of failure (as developing PDPs for multi-classification 466 

problems can be cumbersome, yet can be found elsewhere [115]).  467 

In Fig. 4a, and with regard to moment prediction, one can see that the dominance of the moment 468 

arm feature towards the prediction of a larger moment at failure exceeds all other features for 469 

moments exceeding 135 kN.m. In other words, larger moment arms of 1280 mm (computed as 470 

0.70×1830 mm) tend to generate higher moments, and hence the model’s reasoning for tying this 471 

feature with larger values of moments at failure. Furthermore, smaller moment arms of less than 472 

900 mm do not seem to affect model prediction as compared to the other features significantly. 473 

Additional insights into the impact of each of these features on the increase in a moment (when all 474 

other features remain constant) can also be drawn. For example, this figure shows how all other 475 

features seem to slightly influence the model’s decision-making process, which meshes with that 476 

observed in the low degree of feature importance these features display.  477 
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 478 
(a) Moment capacity 479 

 480 
(b) Binary classification 481 

Fig. 4 Explainability through partial dependence plots (PDP) plots 482 

 483 

On a similar note, Fig. 4b plots the variation in partial dependence for features used in the 484 

classification AI/ML analysis. This figure shows that lesser values of moment arm, ratio of steel 485 

reinforcement, and steel yield strength are directly related to an increase of failure through FRP 486 

debonding. This also agrees with experimental observations wherein shorter moment arms tend to 487 

intensify shear effects, and smaller reinforcement amplifies the utilization of FRP systems under 488 

loading, making it vulnerable to debonding [116]. Also, a clear transition phase at around 40-60% 489 

of the maximum values for moment arm (1830 mm) and steel reinforcement ratio (2.5%) is 490 
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apparent. This figure can become a crucial element to minimizing premature failure of FRP 491 

systems by avoiding scenarios that may trigger debonding failure.  492 

8.3 Feature Interaction 493 

The correlation matrix of the used database in this case study has already been presented and 494 

discussed in Table 2. Thus, Table 5 lists the interaction between features using mutual information 495 

association which measures how much information the presence/absence of a term contributes to 496 

making the correct prediction. This table shows the existence of a strong association between 497 

moment arm and material properties (compressive strength, yield strength, and modulus of FRP), 498 

as well as a slightly strong association with FRP ratio and steel ratio. Other noteworthy 499 

associations also exist between other features such as yield strength and FRP modulus, and 500 

compressive strength, and yield strength. The moment capacity seems to have a good association 501 

with all features (>0.500), with the exception of the strengthening method. Similar observations 502 

can also be made for both cases of classification. A complimentary discussion on feature 503 

interaction is revisited in the surrogate section.  504 

 505 
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Table 5 Explainability through association matrix 532 

Regression M a fc fy  Efr ff r T 

M 1.000        

a 0.551 1.000       

fc 0.517 0.737 1.000      

fy 0.560 0.854 0.762 1.000     

Efr 0.534 0.735 0.684 0.762 1.000    

ff 0.560 0.596 0.560 0.624 0.651 1.000   

r 0.538 0.649 0.608 0.669 0.581 0.493 1.000  

T 0.160 0.389 0.203 0.245 0.219 0.207 0.243 1.000 

Binary classification Debonding r  T fc  a Efr  fr fy  

Debonding 1.000        

r  0.238 1.000       

T 0.019 0.238 1.000      

fc 0.211 0.600 0.202 1.000     

a  0.198 0.628 0.350 0.721 1.000    

Efr 0.167 0.575 0.219 0.681 0.721 1.000   

fr 0.123 0.486 0.209 0.544 0.583 0.652 1.000  

fy 0.177 0.679 0.293 0.787 0.862 0.779 0.637 1.000 

Multi classification Debonding fc r fy  Efr T  fr a 

Debonding 1.000        

fc 0.302 1.000       

r 0.305 0.600 1.000      

fy 0.316 0.787 0.679 1.000     

Efr 0.330 0.681 0.575 0.779 1.000    

T 0.055 0.202 0.238 0.293 0.219 1.000   

fr 0.273 0.544 0.486 0.637 0.652 0.209 1.000  

a 0.279 0.721 0.628 0.862 0.721 0.350 0.583 1.000 

 533 

8.4 SHAP (SHapley Additive exPlanations) 534 

The “base value” for the SHAP method was calculated at 111.73 kN.m. To showcase why did the 535 

ExGBT algorithm arrives at a particular prediction, one prediction for a given beam is examined 536 

herein. This beam (P3) was tested by Kotynia [92] and was made from concrete with a compressive 537 

strength of 44 MPa, yield strength of steel reinforcement of 541 MPa, ratio of steel reinforcement 538 

of 0.502, with FRP ratio of 0.24, modulus of FRP of 163 GPa, moment arm of 1400 mm and NSM 539 

strengthening type. For this particular beam, the ExGBT predicts a moment at failure of 112.6 540 

kN.m (with a measured moment of 106 kN.m). Using the SHAP method, we can then see that the 541 

model predicts 112.6 kN.m as a result of the SHAP values calculated for the contribution of 542 

individual features. These contributions add up at +0.432 for moment arm, +0.026 for 543 
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strengthening type, -0.253 for compressive strength of concrete, -0.103 for ratio of steel 544 

reinforcement, -0.056 for yield strength of steel reinforcement, and -0.038 for all other features 545 

(see Fig. 5). As expected, the algebraic summation of these values adds to the difference between 546 

the prediction and the “base value”. As such, the summation of the contributions with the 547 

prediction values adds up to Zero. 548 

 549 
Fig. 5 Explainability through the SHAP method (Note: causes behind difference in model 550 

prediction (112.6 kN.m) and SHAP base value (111.73 kN.m)) 551 

8.5 Surrogates  552 

A surrogate model is one that is simple, and is then used to augment predictions from a more 553 

complex model. Once the surrogate model passes the training procedure with good performance, 554 

then this model is said to be able to explain the predictions from the complex model. In this study, 555 

two models are used, one that is the generalized additive model (GAM) and another that is based 556 

on genetic algorithm (GA), to surrogate the ExGBT model. The GAM model was able to augment 557 

the ExGBT model with the following metrics; MAPE (37.16/2.03/41.35 kN.m), RMSE 558 

(32.45/31.40/52.69 kN.m), and R2 (0.96/0.94/0.85) for training/validation/testing, respectively. 559 

These metrics show the validity of the GAM model.  560 

Due to its simplicity, the GAM model can be represented by a linear formula. This formula applies 561 

the inverse of the link function used in the GAM model (i.e., exponential function), being 562 

multiplied to the sum of all standardized features multiplied by computed coefficient (see Eq. 2) 563 

in addition to an intercept (if any).  Thus, Eq. 2 now augments the rationale of the ExGBT model 564 

and hence can be used directly without the need to re-run the ExGBT model for each moment 565 

capacity prediction. Equation 3 shows a logistic regression model (a simple model used to 566 

surrogate a complex classification-based model) for the case of binary classification [117]. This 567 

model achieved the following metrics BACC (0.75/0.87/0.68), AUC (0.68/0.85/0.58), and LLE 568 

(0.60/0.47/0.71). 569 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐺𝐴𝑀 =  𝑙𝑖𝑛𝑘 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 [(𝑎𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 × 63.31) +  (𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 × 16.84) +570 

(𝑓𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
× −5.83) +  (𝑓𝑐𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑

× −20.44) + (𝑓𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
× −1.22) +571 

 (𝐸𝑓𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
× −2.28) + (𝑇𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 × −7.28) + 94.10]                 (2) 572 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐿𝑅 =  𝑙𝑜𝑔𝑖𝑡 [(𝑎𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 × −1.03) +  (𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 × −1.74) +573 

(𝑓𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
× 0.24) +  (𝑓𝑐𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑

× −0.0002) + (𝑓𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
× 0.82) +574 

 (𝐸𝑓𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
× 1.06) + (𝑇𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 × 0.10) + 1.39]                  (3) 575 

Another surrogate that can be used to augment an AI/ML model is genetic algorithms (GA). In 576 

this surrogate, and similar to GAMs, a string of representations can be formed [118]. In this 577 

analysis, a GA model was developed and achieved the following performance in MAPE 578 

(66.86/35.72/29.91 kN.m), RMSE (50.38/37.38/48.52 kN.m), and R2 (0.91/0.92/0.87) for 579 

training/validation/testing, respectively. The generated representation is shown in Eq. 4. As one 580 

can see, this GA representation only contains five features, as the rest of the features were dropped 581 

as they were not deemed to be of importance. Interestingly, this expression also shows the direct 582 

but minor interaction between yield strength and FRP ratio, as well as additivity between all other 583 

features2. Also, another GA model for the binary classification model is shown in Eq. 5 with the 584 

following metrics BACC (0.82/0.82/0.78), AUC (0.85/0.84/0.75), and LLE (0.52/0.48/0.55). 585 

Further details with regard to using GA in this database can be found elsewhere [74]. One should 586 

note that there is an ongoing debate on the benefits vs. drawbacks of surrogates [21], and additional 587 

discussion on surrogates is provided in the next section.  588 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐺𝐴𝑀𝑜𝑚𝑒𝑛𝑡
= 𝑒𝑥𝑝 (3.48 + 0.312𝑟 + 0.0015𝑎 − 0.0006𝑓𝑦 − 0.002𝐸𝑓𝑟 − 0.0007𝑓𝑦𝑓𝑓)     589 

            (4) 590 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐺𝐴𝐵𝑖𝑛𝑎𝑟𝑦
= 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (1.2 × 𝑙𝑒𝑠𝑠𝑒𝑟 𝑜𝑓[𝑟, 0.74] − 0.056 − 0.0003 × 𝑎)  (5) 591 

9.0 Insights into Explainability Methods 592 

The first four discussed explainability methods provide insights into the working of complex 593 

models such as ExGBT. These methods tend to be informative and showcase why a model predicts 594 

the way it does. While  the use of surrogates may also help explain such models, this method may 595 

not be as neat as that observed from other methods [119].  596 

As shown in Fig. 6a, extracted feature importance of GAM and GA are not identical to that 597 

obtained from ExGBT. This is expected as GAM and GA are unique models on their own and do 598 

 
2 A more complex representation was also identified as:  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝐺𝐴𝑀𝑜𝑚𝑒𝑛𝑡
= 𝑒𝑥𝑝 (7.64 + 0.68𝑓𝑓𝑓 + 0.0065𝑟𝐸𝑓𝑟 + 0.0014𝑓𝑐

2 + 6.09 × 10−5𝑓𝑐𝑎 + 1.38𝐸𝑓𝑟
2 + 5.45 ×

10−6𝑓𝑦𝐸𝑓𝑟 − 0.012𝐸𝑓𝑟 − 0.165𝑓𝑐 − 0.65𝑓𝑓 − 1.21𝑓𝑦𝑎 − 0.40𝑟2)  

This representation was not further examined as the goal of this work is to articulate simple surrogates. However, this 

representation shows more complex interaction between features than that displayed in Eq. 4. 
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not aim to validate ExGBT, but rather to explain its behavior. From this view, explaining the 599 

ExGBT’s behavior does not necessarily rely on having the same importance for all features, but 600 

rather it aims to use the simplicity of the GAM/GA models to understand ExGBT predictions. 601 

When evaluating both surrogates herein, one must keep in mind; 1) surrogates are applied to a 602 

dataset that has the same features as that of the original dataset, but with an outcome (response) 603 

obtained from ExGBT predictions (i.e., in a way, the new dataset is a derivative of the original 604 

one), and 2) GAM and GA have their own inner working mechanisms and hence do not necessarily 605 

need to oblige or follow that of the ExGBT.  606 

 607 
(a) Feature importance comparison between GAM, GA, and ExGBT 608 

 609 
(b) Predictions vs measured observations (Range: 0-700 kN.m) 610 
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 611 
(c) Predictions vs measured observations (Range: 0-200 kN.m) [shaded area represents 10% 612 

error range with 700 kN.m as maximum moment] 613 

Fig. 6 Comparison between ExGBT, GAM, and GA predictions 614 

To further emphasize the above notion, the plots shown in Figs. 6b and 6c are thought to be 615 

interesting to discuss as they present GAM’s and GA’s response when compared to the measured 616 

values, as well as to ExGBT’s predictions. These figures complement the performance of both 617 

surrogates, which also attained good performance metrics [GAM; MAPE (37.16/2.03/41.35 618 

kN.m), RMSE (32.45/31.40/52.69 kN.m), and R2 (0.96/0.94/0.85), and GA; MAPE 619 

(66.86/35.72/29.91 kN.m), RMSE (50.38/37.38/48.52 kN.m), and R2 (0.91/0.92/0.87)]. A closer 620 

look into these two figures also shows how GAM and GA seem to capture the phenomenon on 621 

hand well, especially in beams with moments reaching around 200 kN.m. Beyond this range, both 622 

GAM and GA deviate their predictions (unlike that observed by ExGBT, the original model used 623 

in this study). This case study shows the need for a deeper dive into surrogates and their behavior 624 

worth further investigation across the range of all datasets. This is best suited for a future work. 625 

In lieu of the observations as triggered by Fig. 6, a question then arises, why would a user not 626 

apply simple models like GAM or GA directly instead of more complex models? The answer is 627 

simple. A user can indeed apply such models. In fact, and ceteris paribus, a user is advised to try 628 

to apply simple models first. If such models fail or do not achieve the required degree of goodness, 629 

then a user may opt to apply more complex models [120]. At the time of this work, the use of 630 

multi-search models, ensembles, and others seem to be worthy of exploring. One should be 631 

cognizant of the fact that selecting a model to explore a given phenomenon via AI/ML does not 632 

follow a standardized procedure simply because we do not have such a procedure yet. On a more 633 

positive note, the open literature does contain a set of recommendations obtained via domain-634 

specific and expert-guided examinations, which can be used to pave the way towards a more 635 

standardized AI/ML application procedure [121–123].  636 

A similar notion can also be argued for the quality of explanation. While an explanation, or a 637 

method of explainability, can satisfy a user, the same degree of reasonability of explainability may 638 

not provide enough evidence to satisfy others [124–126]. In a way, there could potentially be a 639 
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tradeoff between the degree of explainability to that expected level of satisfaction a user is looking 640 

for (e.g., given their background, or need to comply with rules or societal expectations, etc.). Thus, 641 

future works in our domain are invited to explore the notion of XAI and IML and develop 642 

explainable models that best suit our problems, expectations, and norm. 643 

10.0 Conclusions 644 

This paper showcases the applicability of five explainability methods (feature importance, partial 645 

dependence plots, feature interactions, SHAP (SHapley Additive exPlanations), and surrogates) 646 

via a thorough examination of a case study carried out on reinforced concrete (RC) beams 647 

strengthened with fiber-reinforced polymer (FRP) composite laminates. In this case study, three 648 

algorithms, namely: Extreme Gradient Boosted Trees (ExGBT), Light gradient boosted trees 649 

(LGBT), and Keras Deep Neural Networks (KDNN), are applied to predict the maximum moment 650 

capacity of FRP-strengthened beams and the propensity of FRP systems to fail through debonding 651 

mechanisms. The following list of inferences can be drawn from the findings of this study: 652 

• Structural engineers remain reluctant to adopt AI/ML methods as primary tools of analysis 653 

and design of structures due to a few issues related to the opaque nature of AI/ML and to 654 

the limited coding/programming educational experience in typical curricula.  655 

• Current efforts in AI/ML can benefit from focusing on explainability and interpretability, 656 

thereby clearing the blackbox reputation of common AI/ML methods in the structural 657 

engineering domain.  658 

• Of all algorithms showcased herein, the Extreme Gradient Boosted Trees (ExGBT) ranked 659 

the best performance in examining the maximum moment capacity and failure mechanism 660 

of FRP-strengthened beams. 661 

• Using simple surrogate models such as GAM and GA can help augment more complex 662 

models such as ExGBT. 663 
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